Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Microbiol ; 80(1): 51, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547704

RESUMO

A Gram-stain-negative, light yellow, aerobic, non-motile, short rod-shaped bacterium named strain Y-23T with iprodione-degrading capability was isolated from a soil under a greenhouse in Tibet, PR China. Strain Y-23T grew at 4-37 â„ƒ and pH 5.0-9.0 (optimum, 25 â„ƒ and pH 7.0) with 0-3% (w/v) NaCl (optimum, 0%). Phylogenetic analysis based on 16S rRNA gene and chromosome genome indicated that strain Y-23T formed a stable evolutionary branch with Acinetobacter tandoii DSM 14970T. The 16S rRNA gene similarity, digital DNA-DNA hybridization and average nucleotide identity values between strain Y-23T and Acinetobacter tandoii DSM 14970T were 98.31%, 43.2% and 91.2%, respectively. The genome size was 3.39 Mbp with a genomic DNA G+C content of 40.59 mol%. The predominant fatty acids were C18:1 ω9c, Summed feature 3 (C16:1 ω7c/C16:1 ω6c), C12:0, C12:0 3-OH and C16:0. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline, unidentified phospholipid, four unidentified aminophospholipids and two unidentified lipids. The isoprenoid quinone was Q-8 (19.43%) and Q-9 (80.57%). Based on phenotypic, phylogenetic, and genotypic data, strain Y-23T is considered to represent a novel species of the genus Acinetobacter, for which the name Acinetobacter tibetensis sp. nov. is proposed. The type strain is Y-23T (= CICC 25150T = JCM 35630T).


Assuntos
Acinetobacter , Solo , Tibet , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética
2.
J Biol Chem ; 292(52): 21662-21675, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29123030

RESUMO

The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists.


Assuntos
Canais Epiteliais de Sódio/fisiologia , FMRFamida/metabolismo , FMRFamida/fisiologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Células CHO , Cricetulus , Cristalografia por Raios X/métodos , Canais de Sódio Degenerina/fisiologia , Guanidinas/farmacologia , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Ligantes , Moluscos/metabolismo , Oócitos/fisiologia , Peptídeos/farmacologia , Quinazolinas/farmacologia , Xenopus laevis
3.
J Biol Chem ; 292(18): 7619-7635, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302727

RESUMO

P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.


Assuntos
Ativação do Canal Iônico/fisiologia , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Células HEK293 , Humanos , Domínios Proteicos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
4.
J Biol Chem ; 291(14): 7571-82, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26867576

RESUMO

FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily. The peptide ligand control of the channel gating might be an ancient ligand-gating feature in this superfamily. Therefore, studying the peptide recognition of FaNaC channels would advance our understanding of the ligand-gating properties of this superfamily of ion channels. Here we demonstrate that Tyr-131, Asn-134, Asp-154, and Ile-160, located in the putative upper finger domain ofHelix aspersaFaNaC (HaFaNaC) channels, are key residues for peptide recognition of this ion channel. Two HaFaNaC specific-insertion motifs among the ENaC/DEG superfamily, residing at the putative α4-α5 linker of the upper thumb domain and the α6-α7 linker of the upper knuckle domain, are also essential for the peptide recognition of HaFaNaC channels. Chemical modifications and double mutant cycle analysis further indicated that those two specific inserts and key residues in the upper finger domain together participate in peptide recognition of HaFaNaC channels. This ligand recognition site is distinct from that of acid-sensing ion channels (ASICs) by a longer distance between the recognition site and the channel gate, carrying useful information about the ligand gating and the evolution of the trimeric ENaC/DEG superfamily of ion channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Peptídeos/metabolismo , Canais de Sódio/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Peptídeos/genética , Estrutura Terciária de Proteína , Canais de Sódio/genética
5.
Can J Physiol Pharmacol ; 95(6): 625-633, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177681

RESUMO

Impaired endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway induces atherogenesis. The present study examined whether icariin improves the eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null (ApoE-/-) mice. In vitro, primary human umbilical vein endothelial cells (HUVECs) were randomly divided into 7 groups: control; vehicle; icariin 10; lyphosphatidylcholine (LPC) group; LPC + icariin 1; LPC + icariin 3; and LPC + icariin 10. In vivo, 80 mice were separated randomly into 4 groups (n = 20): control, ApoE-/-, ApoE-/- + icariin 10, and ApoE-/- + icariin 30. ApoE-/- mice had significantly more atherosclerosis in the aortic root together with increased aortic ROS production, body mass, plasma triglyceride (TG) and total cholesterol (TC) concentration, decreased aortic eNOS expression, and plasma NO concentration. LPC (10 µg/mL) treatment induced a big decline in NO level in the conditioned medium and eNOS expression, and an increase in intracellular reactive oxygen species (ROS) production in HUVECs. Icariin treatment decreased atherogenesis, ROS production, body mass, plasma TG concentration, and plasma TC concentration, and increased NO concentration and eNOS expression. These findings suggested icariin could improve eNOS/NO-pathway to prohibit the atherogenesis of apolipoprotein E-null mice by restraining oxidative stress.


Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/prevenção & controle , Flavonoides/farmacologia , Deleção de Genes , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética
6.
Appl Opt ; 56(32): 9119-9125, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29131202

RESUMO

Estimating the chirpiness of a spatial chirp signal is important in many optical engineering applications. With the help of transformation optics, a new kind of fractional Fourier transform lens is designed by deforming the conventional graded index lens through conformal mapping, which can manipulate the chirpiness of the input chirp signal. The low-input chirpiness is magnified by the transformation material, and the error of the detection is kept approximately the same; thus, the designed lens has enhanced chirpiness detection precision and distinguishability for low chirpiness. The design is validated by numerical simulations.

7.
ScientificWorldJournal ; 2013: 380692, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023529

RESUMO

This study aimed to investigate the composition of three major stilbenes (mulberroside A, oxyresveratrol, and resveratrol) in different portions of mulberries collected in different seasons and their change molds during growth by high-performance liquid chromatography. Mulberroside A levels were the highest in the bark and roots of Morus atropurpurea Roxb, Morus alba Linn, and Morus latifolia Poir. Oxyresveratrol levels were the highest in roots and stem. Both of these high levels were in September. The amount of resveratrol was very low in all samples. In the stem, Morus latifolia Poir contained more mulberroside A than the other two mulberries. Mulberroside A was not detected in the leaves of the three mulberries. In Morus atropurpurea Roxb seedlings, the root tended to contain more of the three stilbenes than leaves. The temporal peaks of resveratrol were always ahead of those for oxyresveratrol. The levels of the stilbenes varied in different portions of the varieties of mulberries collected in different season and in the seedlings of Morus atropurpurea Roxb.


Assuntos
Dissacarídeos/metabolismo , Morus/metabolismo , Extratos Vegetais/metabolismo , Estações do Ano , Estilbenos/metabolismo , Morus/crescimento & desenvolvimento , Resveratrol
8.
Bioresour Technol ; 377: 128964, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972806

RESUMO

Cordycepin, a nucleoside compound with a variety of biological activities, has been extensively applied in the nutraceutical and pharmaceutical industries. The advancement of microbial cell factories using agro-industrial residues provides a sustainable pathway for cordycepin biosynthesis. Herein, the cordycepin production was enhanced by the modification of glycolysis and pentose phosphate pathway in engineered Yarrowia lipolytica. Then, cordycepin production based on economical and renewable substrates (sugarcane molasses, waste spent yeast, and diammonium hydrogen phosphate) was analyzed. Furthermore, the effects of C/N molar ratio and initial pH on cordycepin production were evaluated. Results indicated that the maximum cordycepin productivity of 656.27 mg/L/d (72 h) and cordycepin titer was 2286.04 mg/L (120 h) by engineered Y. lipolytica in the optimized medium, respectively. The cordycepin productivity in the optimized medium was increased by 28.81% compared with the original medium. This research establishes a promising way for efficient cordycepin production from agro-industrial residues.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica/métodos
9.
Bioresour Technol ; 363: 127862, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041680

RESUMO

Cordycepin is a nucleoside antibiotic with various biological activities, which has wide applications in the area of cosmetic and medicine industries. However, the current production of cordycepin is costly and time-consuming. To construct the promising cell factory for high-level cordycepin production, firstly, the design and construction of cordycepin biosynthetic pathway were performed in Yarrowia lipolytica. Secondly, the adaptivity between cordycepin biosynthetic pathway and Y. lipolytica was enhanced by enzyme fusion and integration site engineering. Then, the production of cordycepin was improved by the enhancement of adenosine supply. Furthermore, through modular engineering, the production of cordycepin was achieved at 3588.59 mg/L from glucose. Finally, 3249.58 mg/L cordycepin with a yield of 76.46 mg/g total sugar was produced by the engineered strain from the mixtures of glucose and molasses. This research is the first report on the de novo high-level production of cordycepin in the engineered Y. lipolytica.


Assuntos
Yarrowia , Adenosina/metabolismo , Antibacterianos/metabolismo , Desoxiadenosinas , Glucose/metabolismo , Engenharia Metabólica , Nucleosídeos , Açúcares/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
10.
Toxicol Appl Pharmacol ; 257(3): 405-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22005275

RESUMO

Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE(-/-)) mice treated or not with kaempferol (50 or 100mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE(-/-) mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE(-/-) mice.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Receptores de Hialuronatos/efeitos dos fármacos , Quempferóis/farmacologia , Osteopontina/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aterosclerose/patologia , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Quempferóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/sangue , Osteopontina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/efeitos dos fármacos
11.
Bioresour Technol ; 323: 124652, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421835

RESUMO

The aim of this present research is to enhance the squalene production in Yarrowia lipolytica using pathway engineering and bioprocess engineering. Firstly, to improve the production of squalene, the endogenous HMG-CoA reductase (HMG1) was overexpressed in Y. lipolytica to yield 208.88 mg/L squalene. Secondly, the HMG1 and diacylglycerol acyltranferase (DGA1) were co-overexpressed, the derived recombinant Y. lipolytica SQ-1 strain produced 439.14 mg/L of squalene. Thirdly, by optimizing the fermentation medium, the improved titer of squalene with 514.34 mg/L was obtained by the engineered strain SQ-1 grown on YPD-80 medium. Finally, by optimizing the addition concentrations of acetate, citrate and terbinafine, the 731.18 mg/L squalene was produced in the engineered strain SQ-1 with the addition of 0.5 mg/L terbinafine. This work describes the highest reported squalene titer in Y. lipolytica to date. This study will provide the foundation for further engineering Y. lipolytica capable of cost-efficiently producing squalene.


Assuntos
Yarrowia , Fermentação , Engenharia Metabólica , Esqualeno , Yarrowia/genética
12.
J Asian Nat Prod Res ; 11(7): 643-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20183301

RESUMO

Previous investigations have indicated that reduced erythrocyte deformability may be an important factor contributing to the development of atherosclerosis, and endogenous asymmetric dimethylarginine (ADMA) might be an important contributor to reduction of erythrocyte deformability in atherosclerosis. In this study, the effect of 3,4,5,6-tetrahydroxyxanthone (1), a kind of polyphenolic compound, on erythrocyte deformability in apolipoprotein E-deficient (apoE-/-) mice was evaluated. After treatment with compound 1 (10 or 20 mg/kg per day) for 4 weeks, erythrocyte deformability, antioxidant enzymes activity, erythrocyte dimethylarginine dimethylaminohydrolase (DDAH) activity, the plasma level of ADMA and malondialdehyde (MDA) level were determined. Treatment with compound 1 (10 or 20 mg/kg) increased erythrocyte deformability, antioxidant enzymes activity concomitantly, a decrease in the plasma levels of MDA and ADMA, and an increase in erythrocyte DDAH activity. The present result suggests that the beneficial effect of 1 on the erythrocyte deformability, besides inhibiting lipid peroxidation, may be related to reduction of ADMA concentration via an increase in DDAH activity.


Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/enzimologia , Xantonas/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Aterosclerose/etiologia , Catalase/metabolismo , Masculino , Malondialdeído/análise , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Xantonas/química
13.
J Agric Food Chem ; 67(35): 9851-9857, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418561

RESUMO

Arachidonic acid (ARA, C20:4) is a typical ω-6 polyunsaturated fatty acid with special functions. Using Yarrowia lipolytica as an unconventional chassis, we previously showed the performance of the Δ-6 pathway in ARA production. However, a significant increase in the Δ-9 pathway has rarely been reported. Herein, the Δ-9 pathway from Isochrysis galbana was constructed via pathway engineering, allowing us to synthesize ARA at 91.5 mg L-1. To further improve the ARA titer, novel enzyme fusions of Δ-9 elongase and Δ-8 desaturase were redesigned in special combinations containing different linkers. Finally, with the integrated pathway engineering and synthetic enzyme fusion, a 29% increase in the ARA titer, up to 118.1 mg/L, was achieved using the reconstructed strain RH-4 that harbors the rigid linker (GGGGS). The results show that the combined pathway and protein engineering can significantly facilitate applications of Y. lipolytica.


Assuntos
Ácido Araquidônico/biossíntese , Engenharia Metabólica , Yarrowia/genética , Yarrowia/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Glucose/metabolismo , Haptófitas/enzimologia
14.
ACS Appl Mater Interfaces ; 11(12): 11451-11458, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834741

RESUMO

The fundamental understanding of electrocatalytic reaction process is anticipated to guide electrode upgradation and acquirement of high-performance vanadium redox flow batteries (VRFBs). Herein, a carbon fiber prototype system with a heteroatom gradient distribution has been developed with enlarged interlayer spacing and a high graphitization that improve the electronic conductivity and accelerate the electrocatalytic reaction, and the mechanism by which gradient-distributed heteroatoms enhance vanadium redox reactions was elucidated with the assistance of density functional theory calculations. All these contributions endow the obtained electrode prominent redox reversibility and durability with only 1.7% decay in energy efficiency over 1000 cycles at 150 mA cm-2 in the VRFBs. Our work sheds light on the significance of elaborated electrode design and impels the in-depth investigation of VRFBs with long service life.

15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(5): 961-5, 2008 May.
Artigo em Zh | MEDLINE | ID: mdl-18720778

RESUMO

Intermolecular hydrogen bond vibrations may be observed in the THz range. Carbohydrates are important bio-molecules, and are the typical systems for the study of hydrogen bonds. Carbohydrate derivatives have critical biological functions, and there are extensive hydrogen bond networks in molecular system, therefore, they would have various bands in the THz region. The THz absorption spectra of several carbohydrate derivatives were measured using a THz apparatus at room temperature. The THz bands are as follows: 1.17, 1.35, 1.93 and 2.23 THz for isopropyl-beta-D-thioglucopyranoside; 1.93 THz for isopropyl-beta-D- thiogalactopyranoside; 1.87 THz for methyl-(tetra-O-acetyl-beta-D-galactopyranoside); 1.23, 1.70, 1.84 and 2. 23 THz for O-(2, 3, 4, 6-tetra-O-acetyl-beta-glucopyranosyl)-N-hydroxysuccinimide. The results indicate that different samples have various bands that originated from collective modes of the whole molecules and especially isomers can be distinguished, showing that THz method is sensitive to the molecular structures and spatial configurations and is a helpful complement of IR spectroscopy.


Assuntos
Carboidratos/química , Espectroscopia Terahertz/métodos , Ligação de Hidrogênio
16.
Obes Res Clin Pract ; 12(Suppl 2): 71-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28320596

RESUMO

OBJECTIVE: Previous investigations have shown that the peroxisome proliferator activated receptor beta/delta (PPAR/)-angiopoietin-like protein 4 (ANGPTL4) pathways may be a new pharmacologic target for treatment of obesity. The present study was conducted to test the effect of phillyrin, a glucoside, on obesity in mice. METHOD: Fifty mice were randomly divided into 5 groups (n=10): control group (C57BL/6J mice), obese mice group, two groups of obese mice treated with phillyrin (15 or 45mg/kg/day), one group of obese mice treated with PPAR/ agonist GW0742 (3mg/kg/day). Twelve weeks after treatment, body weight, liver weight, fat weight, lipid levels in the liver, serum levels of tumour necrosis factor-(TNF-), leptin, and insulin, expression of PPAR/, ANGPTL4, and AMP-activated protein kinase (AMPK) were determined. RESULTS: Treatment with phillyrin (15 or 45mg/kg) significantly decreased body weight, liver weight, fat weight, hepatic total cholesterol, free fatty acid, and triglyceride concentrations, serum levels of TNF-, leptin, and insulin concomitantly with up-regulated expression of PPAR/, ANGPTL4, and p-AMPK-. In addition, GW0742 has similar effect of phillyrin. CONCLUSIONS: The present results suggest that phillyrin could regulate the PPAR/-ANGPTL 4 pathway to lower body weight in obese C57BL/6J mice.


Assuntos
Angiopoietinas/biossíntese , Glucosídeos/farmacologia , Obesidade/tratamento farmacológico , PPAR alfa/biossíntese , Transdução de Sinais/efeitos dos fármacos , Angiopoietinas/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , PPAR alfa/genética
17.
J Agric Food Chem ; 66(34): 8983-8990, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30092639

RESUMO

Previous investigations have shown molecular cross-talk among activated adenosine monophosphate-activated protein kinase (AMPK), proprotein convertase subtilisin/kexin type 9 (PCSK9), sterol regulatory element-binding proteins (SREBPs), and low-density lipoprotein receptor (LDLR) and that it may be an innovative pharmacologic objective for treating obesity. We scrutinized the beneficial effect of naringin, a flavanone-7- O-glycoside, on obesity and the mechanisms in the present study. We arbitrarily divided 50 mice into five groups ( n = 10): 25 or 50 or 100 mg/kg/day naringin-treated obese mice (gavage for 8 weeks), untreated obese mice, and C57BL/6J control. After 8 weeks, body weight was 51.8 ± 4.4 in the untreated obese mice group, while the weights were 41.4 ± 4.1, 34.6 ± 2.2, and 28.0 ± 2.3 in 25, 50,100 mg/kg naringin groups, respectively. Moreover, naringin treatment significantly decreased plasma 8-isoprostane (an indicator of the oxidative stress) level, fat weight, liver weight, hepatic total cholesterol concentration, hepatic triglyceride concentration, plasma leptin level, plasma insulin content, plasma low-density lipoprotein cholesterol level, and plasma PCSK9 production concomitantly with down-regulated expression of SREBP-2, PCSK9, and SREBP-1, and up-regulated expression of p-AMPKα and LDLR. The present results suggest that naringin activates AMPK resulting in altered expression of SREBPs, PCSK9, and LDLR to reduce the body weight of obese C57BL/6J mice.


Assuntos
Flavanonas/administração & dosagem , Obesidade/tratamento farmacológico , Pró-Proteína Convertase 9/genética , Proteínas Quinases/metabolismo , Receptores de LDL/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Peso Corporal/efeitos dos fármacos , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Pró-Proteína Convertase 9/metabolismo , Proteínas Quinases/genética , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Life Sci ; 209: 97-102, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048696

RESUMO

AIMS: Recent investigations have shown that dimethylarginine dimethylaminohydrolase (DDAH) may be related to sleep disorder. The present study was conducted to test the hypnotic effect of jujubosides from Semen Ziziphi Spinosae (SZSJ) on sleep deprivation and the mechanisms involved. MATERIALS AND METHODS: Forty rats were randomly divided into 4 groups (n = 10): two groups of sleep-deprived rats treated with SZSJ (10 or 30 mg/kg per day), sleep-deprived rats group, and control group. At the end of experiment, cerebral DDAH expression, cerebral asymmetric dimethylarginine (ADMA) level, sleep parameters, behavioral activities, and cerebral neurotransmitters level brain was examined. KEY FINDINGS: Six days after treatment, SZSJ treatment up-regulated cerebral expression of DDAH I and DDAH II concomitantly with elevated parameters of total sleep time, cerebral γ­aminobutyric acid and 5­hydroxytryptamine, and reduced values of forelimb lifting-up frequency and walking time, cerebral 8-isoprostane, ADMA, noradrenaline, and glutamic acid in sleep deprivation of rats. SIGNIFICANCE: The present results suggest that SZSJ Protects against insomnia by a decrease in ADMA level and an improvement in DDAH production in sleep-deprived rats.


Assuntos
Amidoidrolases/metabolismo , Arginina/análogos & derivados , Hipnóticos e Sedativos/farmacologia , Substâncias Protetoras/farmacologia , Privação do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Ziziphus/química , Animais , Arginina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Privação do Sono/metabolismo
19.
Inflammation ; 41(1): 299-306, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29119338

RESUMO

Chronic endometritis is a continuous inflammation of uterine endometrium. Recent research has shown that higher asymmetric dimethylarginine (ADMA) levels contribute to endothelial dysfunction. In the present study, we tested whether there is a correlation between endometritis and ADMA in LPS-induced endometritis rat and the mechanisms involved. Thirty-six rats were divided into two groups: blank control group and rat model of endometritis group. The entire infused uterus were removed to observe the changes of histopathology, production of myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, 8-isoprostane, and reactive oxygen species (ROS), and gene expression of dimethylarginine dimethylaminohydrolase 2 (DDAH2), protein-methyl transferase 1 (PRMT1), TNF-α, and IL-6. In endometritis rat group, characteristic histopathologic changes in uteri were observed. The uterine 8-isoprostane, ROS, MPO activity, IL-6 and TNF-α concentrations, PRMT1, IL-6, and TNF-α expressions were significantly elevated, and DDAH2 expression was notably reduced in endometritis group compared with control group. The present findings suggest that elevated levels of ADMA are associated with lower DDAH2 and higher PRMT1 in LPS-induced endometritis rat.


Assuntos
Amidoidrolases/metabolismo , Arginina/análogos & derivados , Endometriose/enzimologia , Lipopolissacarídeos , Proteína-Arginina N-Metiltransferases/metabolismo , Útero/enzimologia , Amidoidrolases/genética , Animais , Arginina/metabolismo , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Endometriose/induzido quimicamente , Endometriose/genética , Endometriose/patologia , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Peroxidase/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Útero/patologia
20.
Pharmacol Rep ; 70(3): 439-445, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627690

RESUMO

BACKGROUND: Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. METHODS: Forty mice were randomly divided into 4 groups (n=10): C57BL/6J control mice, untreated murine mastitis, 10mg/kg kaempferol treated murine mastitis (ip), and 30mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10mmol/L vehicle of kaempferol group, 10µmol/L kaempferol treated group, 20µg/mL LPS treated group, 1µmol/L kaempferol plus LPS treated group, 3µmol/L kaempferol plus LPS treated group, and 10µmol/L kaempferol plus LPS treated group. RESULTS: In murine mastitis, kaempferol (10 or 30mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3 or 10µM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. CONCLUSIONS: The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , Quempferóis/farmacologia , Mastite/tratamento farmacológico , Mastite/metabolismo , Proteína 2 Semelhante a Angiopoietina , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA