Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Plant Physiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935533

RESUMO

Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was down-regulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast two-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and shed lights on a new mechanism by which a V-ATPase is involved in plant antiviral defense.

2.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804524

RESUMO

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genética
3.
Anal Chem ; 96(9): 3859-3869, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38318710

RESUMO

Vortex-based microfluidics has received significant attention for its unique characteristics of high efficiency, flexible control, and label-free properties for the past decades. Herein, we present a vortex-based acousto-inertial chip that allows both fluid and particle manipulation within a significantly wider flow range and lower excitation voltage. Composed of contraction-expansion array structures and vibrating microstructures combined with bubbles and sharp edges, such a configuration results in more vigorous vortical fluid motions. The overall improvement in device performance comes from the synergistic effect of acoustics and inertia, as well as the positive feedback loop formed by vibrating bubbles and sharp edges. We characterize flow patterns in the microchannels by fluorescence particle tracer experiments and uncover single- and double-vortex modes over a range of sample flow rates and excitation voltages. On this basis, the ability of rapid and efficient sample homogenization up to a flow rate of 200 µL/min under an excitation voltage of 15 Vpp is verified by a two-fluid fluorescence mixing experiment. Moreover, the recirculation motion of particles in microvortices is investigated by using a high-speed imaging system. We also quantitatively measure the particle velocity variation on the trajectory and illustrate the capturing mechanism, which results from the interaction of the microvortices, particle dynamics, and composite microstructure perturbations. Further utilizing the shear forces derived by microvortices, our acousto-inertial chip is demonstrated to lysis red blood cells (RBCs) in a continuous, reagent-free manner. The high controllability and multifunction of this technology allow for the development of multistep miniaturized "lab-on-chip" analytical systems, which could significantly broaden the application of microvortex technology in biological, chemical, and clinical applications.

4.
PLoS Pathog ; 18(1): e1010257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073383

RESUMO

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.


Assuntos
Endossomos/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Potyvirus/patogenicidade , Proteínas de Transporte Vesicular/metabolismo , Compartimentos de Replicação Viral/metabolismo , Humanos , Doenças das Plantas/microbiologia , Replicação Viral/fisiologia
5.
Electrophoresis ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794969

RESUMO

Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (Re) and the structure parameter RW, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing Re, decreasing RW , and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.

6.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568794

RESUMO

Green-stem forsythia (Forsythia viridissima), also known as golden bell, is cultivated widely in China as an early spring flowering shrub. In July 2020, yellow or white vein clearing symptoms on leaves were observed in approximate 15% golden bell plants along a landscape river in Ningbo city, Zhejiang province, China. Symptomatic leaves from six different plants were collected and pooled. Total RNA was extracted from about 200 mg pooled sample using TRIzol Reagent (Invitrogen, Carlsbad, USA) and used for high-throughput sequencing (HTS). The cDNA library was constructed using a TruSeq RNA Sample Preparation Kit (Illumina) and an Illumina NovaSeq 6000 platform was utilized to yield 150 nt paired-end reads. CLC Genomic Workbench 11 (QIAGEN) with default parameters were used for data analysis. A total of 41,604,174 paired-end reads were obtained, and 156,853 contigs (16 - 26,665 nt) were generated de novo and compared with sequences in the NCBI nt and nr database using BLASTn and BLASTx, respectively. A total of 197,277 reads were mapped to the citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) genome with an average coverage of 3191×. A contig of 8783 nt (excluding the poly(A) tail) was aligned to CLBV isolate Vib (accession No. OP751940) by BLASTn with the highest nt sequence identity of 99.7% and 99% query coverage, suggesting that the samples were infected with CLBV (Myung-Hwi Kim et al. 2023). No other virus was detected by this analysis. Subsequently, leaves of the six plants collected above, three plants with mild chlorotic symptoms and three plants without obvious symptoms were tested separately by RT-PCR and all were positive for CLBV. Sap from multiple symptomatic F. viridissima leaves was mechanically inoculated to Nicotiana benthamiana, N. tabacum and Datura stramonium in sextuplicate, but after two months, none of the inoculated plants had obvious symptoms and all of them tested negative for CLBV using RT-PCR. To determine the genome sequence of CLBV present in F. viridissima, a single sample from one plant was selected for genome validtion. The contig sequence was confirmed by Sanger sequencing of RT-PCR products amplified using CLBV-specific primers, and the 5' terminal sequence of the virus was determined using a commercial SUPERSWITCH RACE cDNA Synthesis Kit (Tiosbio, Beijing, China). The complete genomic sequence of CLBV isolated from F. viridissima was 8787 nts long, excluding the poly(A) tail, has the expected three predicted ORFs and was deposited in the GenBank database (accession no. OR766026). Phylogenetic analysis of different CLBV genome sequences from fruit trees and other hosts in GenBank using MEGA11 showed that the golden bell isolate was most closely related to isolate Vib (OP751940) from Viburnum lentago in South Korea, with which it was almost identical (99.7% complete nt sequence identity and >99% aa sequence identity in each of the three ORFs). Ten viruses have been previously reported from Forsythia spp. (Kaminska, M. 1985; Lee et al. 1997), but this is the first report of CLBV in this host. CLBV mainly infects citrus, kiwifruit and apple causing mosaic, chlorosis or yellow vein clearing symptoms, however, bud union disorder was observed in 'Nagami' kumquat infected by CLBV, which caused serious production losses (Cao et al. 2017; Li et al. 2018; Liu et al. 2019; Galipienso et al. 2001). Therefore, further investigation is needed to assess if F. viridissima can be an intermediate host to transfer CLBV to other crops.

7.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
8.
PLoS Pathog ; 17(9): e1009963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587220

RESUMO

Autophagy is induced by viral infection and has antiviral functions in plants, but the underlying mechanism is poorly understood. We previously identified a viral small interfering RNA (vsiRNA) derived from rice stripe virus (RSV) RNA4 that contributes to the leaf-twisting and stunting symptoms caused by this virus by targeting the host eukaryotic translation initiation factor 4A (eIF4A) mRNA for silencing. In addition, autophagy plays antiviral roles by degrading RSV p3 protein, a suppressor of RNA silencing. Here, we demonstrate that eIF4A acts as a negative regulator of autophagy in Nicotiana benthamiana. Silencing of NbeIF4A activated autophagy and inhibited RSV infection by facilitating autophagic degradation of p3. Further analysis showed that NbeIF4A interacts with NbATG5 and interferes with its interaction with ATG12. Overexpression of NbeIF4A suppressed NbATG5-activated autophagy. Moreover, expression of vsiRNA-4A, which targets NbeIF4A mRNA for cleavage, induced autophagy by silencing NbeIF4A. Finally, we demonstrate that eIF4A from rice, the natural host of RSV, also interacts with OsATG5 and suppresses OsATG5-activated autophagy, pointing to the conserved function of eIF4A as a negative regulator of antiviral autophagy. Taken together, these results reveal that eIF4A negatively regulates antiviral autophagy by interacting with ATG5 and that its mRNA is recognized by a virus-derived siRNA, resulting in its silencing, which induces autophagy against viral infection.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Fatores de Iniciação em Eucariotos/metabolismo , Imunidade Vegetal/fisiologia , RNA Interferente Pequeno/metabolismo , Proteínas de Plantas/metabolismo , Tenuivirus , Nicotiana/virologia
9.
PLoS Pathog ; 17(12): e1010108, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34852025

RESUMO

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mottle virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway.


Assuntos
Proteínas de Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Potyvirus/metabolismo , Tilacoides/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Viroses/virologia
10.
Arch Virol ; 168(11): 281, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889350

RESUMO

A novel mitovirus was detected in taro (Colocasia esculenta) growing in Ningbo, China. The complete genome sequence of Colocasia esculenta associated mitovirus 1 (CeaMV1) was determined by next-generation sequencing combined with RT-PCR and RACE. The genome is 2921 nucleotides long and contains a single ORF encoding a putative RNA-dependent RNA polymerase. Homology searches and phylogenetic analysis suggested that CeaMV1 is a member of a new species in the genus Duamitovirus. This is the first report of a member of the family Mitoviridae associated with taro.


Assuntos
Colocasia , Vírus de RNA , Filogenia , Genoma Viral , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
11.
Arch Virol ; 168(6): 167, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227509

RESUMO

The complete genome of a new virus belonging to the family Betaflexiviridae was identified in garlic and sequenced by next-generation sequencing and reverse transcription PCR. The complete RNA genome (GenBank accession number OP021693) is 8191 nucleotides in length, excluding the 3' poly(A) tail, and contains five open reading frames (ORFs). These open reading frames encode the viral replicase, triple gene block, and coat protein, and the genome organization is typical of members of the subfamily Quinvirinae. The virus has been tentatively named "garlic yellow curl virus" (GYCV). Phylogenetic analysis suggested that it represents an independent evolutionary lineage in the subfamily, clustering with the currently unclassified garlic yellow mosaic associated virus (GYMaV) and peony betaflexivirus 1 (PeV1). Differences between the phylogenies inferred for the replicase and coat protein indicate that the new virus does not belong to any established genus of the family Betaflexiviridae. This is the first report of GYCV in China.


Assuntos
Flexiviridae , Alho , Alho/genética , Filogenia , Genoma Viral , Flexiviridae/genética , RNA , RNA Mensageiro , Fases de Leitura Aberta , RNA Viral/genética , Doenças das Plantas
12.
Arch Virol ; 168(5): 137, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043037

RESUMO

The complete genomic sequence of a waikavirus from Chinese hackberry in Zhejiang province, China, named "hackberry virus A" (HVA), was determined using high-throughput sequencing (HTS) combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The bicistronic genomic RNA of HVA was found to consist of 12,691 nucleotides (nt), excluding the 3'-terminal poly(A) tail, and to encode a large polyprotein of 3783 amino acids (aa) and an additional 10.3-kDa protein. The aa sequences of the Pro-Pol and the CP regions of this virus share 39.8-44.2% and 25.5-36.4% identity, respectively, with currently known waikaviruses. These values are significantly below the current species demarcation threshold (< 75% and < 80% aa identity for the CP and Pro-Pol region, respectively) for the family Secoviridae, indicating that HVA represents a new species in the genus Waikavirus. This is the first report of a virus infecting Chinese hackberry.


Assuntos
Waikavirus , Waikavirus/genética , Sequência de Bases , Genoma Viral , Filogenia , Doenças das Plantas , RNA Viral/genética
13.
Medicina (Kaunas) ; 59(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374304

RESUMO

Acupuncture treatment in local areas is commonly used to treat pain or soreness; however, acupuncture around the neck or shoulder may be a risk factor for pneumothorax. Herein, we report two cases of iatrogenic pneumothorax after acupuncture. These points indicate that physicians should be aware of these risk factors through history-taking before acupuncture. Chronic pulmonary diseases, such as chronic bronchitis, emphysema, tuberculosis, lung cancer, pneumonia, and thoracic surgery, may be associated with a higher risk of iatrogenic pneumothorax after acupuncture. Even if the incidence of pneumothorax should be low under caution and fully evaluated, it is still recommended to arrange further imaging examinations to rule out the possibility of iatrogenic pneumothorax.


Assuntos
Terapia por Acupuntura , Pneumotórax , Enfisema Pulmonar , Humanos , Pneumotórax/etiologia , Pneumotórax/terapia , Terapia por Acupuntura/efeitos adversos , Dor/etiologia , Enfisema Pulmonar/complicações , Doença Iatrogênica
14.
PLoS Pathog ; 16(8): e1008780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866188

RESUMO

Ubiquitin like protein 5 (UBL5) interacts with other proteins to regulate their function but differs from ubiquitin and other UBLs because it does not form covalent conjugates. Ubiquitin and most UBLs mediate the degradation of target proteins through the 26S proteasome but it is not known if UBL5 can also do that. Here we found that the UBL5s of rice and Nicotiana benthamiana interacted with rice stripe virus (RSV) p3 protein. Silencing of NbUBL5s in N. benthamiana facilitated RSV infection, while UBL5 overexpression conferred resistance to RSV in both N. benthamiana and rice. Further analysis showed that NbUBL5.1 impaired the function of p3 as a suppressor of silencing by degrading it through the 26S proteasome. NbUBL5.1 and OsUBL5 interacted with RPN10 and RPN13, the receptors of ubiquitin in the 26S proteasome. Furthermore, silencing of NbRPN10 or NbRPN13 compromised the degradation of p3 mediated by NbUBL5.1. Together, the results suggest that UBL5 mediates the degradation of RSV p3 protein through the 26S proteasome, a previously unreported plant defense strategy against RSV infection.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Tenuivirus/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Tenuivirus/genética , Nicotiana/genética , Ubiquitinas/genética , Proteínas Virais/genética
15.
Pharmacol Res ; 184: 106412, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007774

RESUMO

BACKGROUND: Viral- and host-targeted traditional Chinese medicine (TCM) formulae NRICM101 and NRICM102 were administered to hospitalized patients with COVID-19 during the mid-2021 outbreak in Taiwan. We report the outcomes by measuring the risks of intubation or admission to intensive care unit (ICU) for patients requiring no oxygen support, and death for those requiring oxygen therapy. METHODS: This multicenter retrospective study retrieved data of 840 patients admitted to 9 hospitals between May 1 and July 26, 2021. After propensity score matching, 302 patients (151 received NRICM101 and 151 did not) and 246 patients (123 received NRICM102 and 123 did not) were included in the analysis to assess relative risks. RESULTS: During the 30-day observation period, no endpoint occurred in the patients receiving NRICM101 plus usual care while 14 (9.27%) in the group receiving only usual care were intubated or admitted to ICU. The numbers of deceased patients were 7 (5.69%) in the group receiving NRICM102 plus usual care and 27 (21.95%) in the usual care group. No patients receiving NRICM101 transitioned to a more severe status; NRICM102 users were 74.07% less likely to die than non-users (relative risk= 25.93%, 95% confidence interval 11.73%-57.29%). CONCLUSION: NRICM101 and NRICM102 were significantly associated with a lower risk of intubation/ICU admission or death among patients with mild-to-severe COVID-19. This study provides real-world evidence of adopting broad-spectrum oral therapeutics and shortening the gap between outbreak and effective response. It offers a new vision in our preparation for future pandemics.


Assuntos
COVID-19 , COVID-19/terapia , Humanos , Medicina Tradicional Chinesa , Pontuação de Propensão , Estudos Retrospectivos , SARS-CoV-2
16.
Arch Virol ; 167(11): 2391-2393, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35925395

RESUMO

The complete genome sequence of a virus from lily (Lilium lancifolium Thunb.) growing in Huoshan County, Anhui Province, China, was determined. The whole genome consists of 9558 nucleotides, excluding the poly(A) tail, and encodes a 3061-amino-acid polyprotein (GenBank number ON365558) typical of potyviruses. This is the first complete genome sequence of iris potyvirus B (IPB), for which only a partial sequence from Iris domestica was reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. The complete polyprotein ORF shares 73.6% nucleotide and 81.6% amino acid sequence identity with that of iris potyvirus A (IPA, GenBank number MH898493). Phylogenetic analysis showed that IPB is related to IPA and clusters in a group with lily yellow mosaic virus (LYMV). This is the first report of IPB infecting lily plants.


Assuntos
Lilium , Potyvirus , China , Genoma Viral , Nucleotídeos , Filogenia , Doenças das Plantas , Poliproteínas/genética , Potyvirus/genética , RNA Mensageiro , RNA Viral/genética
17.
Arch Virol ; 167(7): 1583-1587, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567696

RESUMO

Chilli ringspot virus (ChiRSV; genus Potyvirus) was one of several viruses previously detected in pepper samples with severe yellowing and curling symptoms growing in Wenshan, Yunan province, China. We now report the full-length sequence of ChiRSV-YN/Wenshan (MZ269480), which has 88.5-98.9% nucleotide sequence identity to other published ChiRSV isolates. A full-length cDNA infectious clone was constructed. This cDNA and an eGFP-tagged clone were infectious, leading to systemic symptoms in both Nicotiana benthamiana and Capsicum spp. Recombinant clones containing the P1 protein coding region of other ChiRSV isolates differed in their pathogenicity. Single infection by ChiRSV caused mild mosaic or leaf crinkling in Capsicum frutescens L. and Capsicum annuum L.


Assuntos
Capsicum , Potyvirus , China , Células Clonais , DNA Complementar/genética , Genoma Viral , Doenças das Plantas , Potyvirus/genética
18.
Dermatol Ther ; 35(7): e15556, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35514034

RESUMO

Vitiligo is an acquired depigmenting disorder in which destruction of skin melanocytes. In recent years, 308-nm excimer laser (308-nm EL) and topical tacrolimus have been extensively used to treat vitiligo. This study aimed to investigate the effectiveness and safety of combined treatment of 308-nm EL and topical tacrolimus for treating periocular vitiligo compared to 308-nm EL monotherapy. This study is a retrospective observational study, involving 58 Chinese patients of periocular vitiligo, divided into two groups: the control group (28 patients) treated with 308-nm EL; and the experimental group (30 patients) treated with 308-nm EL and topical tacrolimus 0.1% ointment. Repigmentation was assessed at four grades. In the control group, there were four patients (14%) with poor repigmentation, eleven patients (39%) with moderate repigmentation, ten patients (36%) with good repigmentation, three patients (11%) with excellent repigmentation. In the experimental group, two patients (7%) experienced poor repigmentation, six patients (20%) experienced moderate repigmentation, fifteen patients (50%) experienced good repigmentation, seven patients (23%) experienced excellent repigmentation. The experimental group efficacy rate (good and excellent repigmentation) was 73.3%, higher than 46.4% for the control group (p = 0.037). Our findings suggest that both treatments are safe and the combination of tacrolimus and 308-nm EL is more effective than 308-nm EL alone for periocular vitiligo.


Assuntos
Tacrolimo , Vitiligo , Terapia Combinada , Humanos , Lasers de Excimer/efeitos adversos , Estudos Retrospectivos , Tacrolimo/efeitos adversos , Resultado do Tratamento , Vitiligo/diagnóstico , Vitiligo/terapia
19.
J Mol Cell Cardiol ; 161: 9-22, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339758

RESUMO

OBJECTIVE: Pulmonary vascular remodeling due to excessive growth factor production and pulmonary artery smooth muscle cells (PASMCs) proliferation is the hallmark feature of pulmonary arterial hypertension (PAH). Recent studies suggest that miR-663 is a potent modulator for tumorigenesis and atherosclerosis. However, whether miR-663 involves in pulmonary vascular remodeling is still unclear. METHODS AND RESULTS: By using quantitative RT-PCR, we found that miR-663 was highly expressed in normal human PASMCs. In contrast, circulating level of miR-663 dramatically reduced in PAH patients. In addition, in situ hybridization showed that expression of miR-663 was decreased in pulmonary vasculature of PAH patients. Furthermore, MTT and cell scratch-wound assay showed that transfection of miR-663 mimics significantly inhibited platelet derived growth factor (PDGF)-induced PASMCs proliferation and migration, while knockdown of miR-663 expression enhanced these effects. Mechanistically, dual-luciferase reporter assay revealed that miR-663 directly targets the 3'UTR of TGF-ß1. Moreover, western blots and ELISA results showed that miR-663 decreased PDGF-induced TGF-ß1 expression and secretion, which in turn suppressed the downstream smad2/3 phosphorylation and collagen I expression. Finally, intratracheal instillation of adeno-miR-663 efficiently inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy in monocrotaline (MCT)-induced PAH rat models. CONCLUSION: These results indicate that miR-663 is a potential biomarker for PAH. MiR-663 decreases PDGF-BB-induced PASMCs proliferation and prevents pulmonary vascular remodeling and right ventricular hypertrophy in MCT-PAH by targeting TGF-ß1/smad2/3 signaling. These findings suggest that miR-663 may represent as an attractive approach for the diagnosis and treatment for PAH.


Assuntos
MicroRNAs/sangue , Hipertensão Arterial Pulmonar/genética , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Vascular/genética , Idoso , Animais , Becaplermina/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Monocrotalina/toxicidade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/citologia , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Remodelação Vascular/efeitos dos fármacos
20.
BMC Plant Biol ; 21(1): 425, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537002

RESUMO

BACKGROUND: The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. RESULTS: In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. CONCLUSIONS: This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


Assuntos
Catharanthus/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Catharanthus/enzimologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Interações Hospedeiro-Patógeno , Filogenia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia , Nicotiana/virologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA