Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796552

RESUMO

How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in pre-implantation embryos and during embryonic development is not clear. Here, we have deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/Ezh2 (Ezh1/2) double knockout (KO) oocytes. The effects of Ezh1/2 maternal KO were inherited in zygotes and early embryos, in which restoration of H3K27me3 and H3K27me2 was delayed by the loss of Ezh2 alone or of both Ezh1 and Ezh2. However, the ablation of both Ezh1 and Ezh2, but not Ezh1 or Ezh2 alone, led to significantly decreased litter size due to growth retardation post-implantation. Maternal Ezh1/2 deficiency caused compromised H3K27me3 and pluripotent epiblast cells in late blastocysts, followed by defective embryonic development. By using RNA-seq, we examined crucial developmental genes in maternal Ezh1/2 KO embryos and identified 80 putatively imprinted genes. Maternal Ezh1/2-H3K27 methylation is inherited in offspring embryos and has a critical effect on fetal and placental development. Thus, this work sheds light on maternal epigenetic modifications during embryonic development.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Camadas Germinativas/metabolismo , Camundongos , Oócitos/metabolismo , Placenta/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Gravidez
2.
PLoS Genet ; 18(1): e1010018, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025868

RESUMO

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein ß (C/EBPß) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


Assuntos
Decídua/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Útero/citologia , Animais , Linhagem Celular , Proliferação de Células , Implantação do Embrião , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Camundongos , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Útero/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914132

RESUMO

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Assuntos
Implantação do Embrião , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno , Progesterona , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Infertilidade Feminina , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Útero/enzimologia , Útero/metabolismo
4.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529784

RESUMO

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Assuntos
Mitocôndrias , Oócitos , Complexo Repressor Polycomb 2 , Animais , Feminino , Camundongos , Apoptose/genética , Autofagia/genética , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Potencial da Membrana Mitocondrial , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Mórula/metabolismo , Oócitos/metabolismo , Estresse Oxidativo/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Espécies Reativas de Oxigênio/metabolismo , Histonas/metabolismo
5.
Arch Insect Biochem Physiol ; 114(1): e22030, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37282754

RESUMO

The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.


Assuntos
Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Estresse Fisiológico/genética , Larva/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Ecotoxicol Environ Saf ; 253: 114658, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796207

RESUMO

Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.


Assuntos
Chironomidae , Inseticidas , Animais , Antioxidantes/farmacologia , Ecossistema , Larva , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade
7.
Pestic Biochem Physiol ; 196: 105593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945243

RESUMO

The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.


Assuntos
Benzamidas , Reprodução , Feminino , Animais , Spodoptera/genética , Fertilidade , Pupa , Larva
8.
Mol Biol Evol ; 38(12): 5539-5554, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34515790

RESUMO

Miniaturization has occurred in many animal lineages, including insects and vertebrates, as a widespread trend during animal evolution. Among Hymenoptera, miniaturization has taken place in some parasitoid wasp lineages independently, and may have contributed to the diversity of species. However, the genomic basis of miniaturization is little understood. Diverged approximately 200 Ma, Telenomus wasps (Platygastroidea) and Trichogramma wasps (Chalcidoidea) have both evolved to a highly reduced body size independently, representing a paradigmatic example of convergent evolution. Here, we report a high-quality chromosomal genome of Telenomus remus, a promising candidate for controlling Spodoptera frugiperda, a notorious pest that has recently caused severe crop damage. The T. remus genome (129 Mb) is characterized by a low density of repetitive sequence and a reduction of intron length, resulting in the shrinkage of genome size. We show that hundreds of genes evolved faster in two miniaturized parasitoids Trichogramma pretiosum and T. remus. Among them, 38 genes exhibit extremely accelerated evolutionary rates in these miniaturized wasps, possessing diverse functions in eye and wing development as well as cell size control. These genes also highlight potential roles in body size regulation. In sum, our analyses uncover a set of genes with accelerated evolutionary rates in Tri. pretiosum and T. remus, which might be responsible for their convergent adaptations to miniaturization, and thus expand our understanding on the evolutionary basis of miniaturization. Additionally, the genome of T. remus represents the first genome resource of superfamily Platygastroidea, and will facilitate future studies of Hymenoptera evolution and pest control.


Assuntos
Vespas , Animais , Genômica , Spodoptera , Vespas/genética
9.
Clin Genet ; 100(4): 376-385, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34096614

RESUMO

Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, and most of idiopathic OAT patients are thought to be caused by genetic defects. Here, we recruited 38 primary infertile patients with the OAT phenotype and 40 adult men with proven fertility for genetic analysis and identified biallelic mutations of KATNAL2 by whole-exome sequencing in two cases. F013/II:1, from a consanguineous family, carried the KATNAL2 c.328C > T:p.Arg110X homozygous mutations. The other carried c.55A > G: p.Lys19Glu and c.169C > T: p Arg57Trp biallelic mutations. None of the KATNAL2 variants were found in the 40 adult men with proven fertility. The spermatozoa from patients with KATNAL2 biallelic mutations exhibited conspicuous defects in maturation, head morphology, and the structure of mitochondrial sheaths and flagella. KATNAL2 was mainly expressed in the pericentriolar material and mitochondrial sheath of the spermatozoa from control subjects, but it was undetectable in the spermatozoa from the patients. Furthermore, Katnal2 null male mice were infertile and displayed an OAT phenotype. Our results proved that the biallelic mutations in KATNAL2 cause male infertility and OAT in humans for the first time, to our knowledge, which could enrich the genetic defect spectrum of OAT and be beneficial for its accurate genetic screening and clinical diagnosis.


Assuntos
Alelos , Astenozoospermia/diagnóstico , Astenozoospermia/genética , Katanina/genética , Mutação , Substituição de Aminoácidos , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Estudos de Associação Genética , Genótipo , Homozigoto , Humanos , Imuno-Histoquímica , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Linhagem , Análise do Sêmen , Análise de Sequência de DNA , Contagem de Espermatozoides , Sequenciamento do Exoma
10.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1300-1309, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34476482

RESUMO

Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of both the cilia and flagella, and defects in these proteins generally impair the axoneme structure and cause primary ciliary dyskinesia. But relatively little is known about the influence of dynein protein arm defects on sperm flagella function. Here, we recruited 85 infertile patients with idiopathic asthenozoospermia and identified bi-allelic mutations in DNAH7 (NM_018897.3) from three patients using whole-exome sequencing. These variants are rare, highly pathogenic, and very conserved. The spermatozoa from the patients with DNAH7 bi-allelic mutations showed specific losses in the inner dynein arms. The expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased, but these patients were able to have their children via intra-cytoplasmic sperm injection treatment. Our study is the first to demonstrate that bi-allelic mutations in DNAH7 may impair the integrality of axoneme structure, affect sperm motility, and cause asthenozoospermia in humans. These findings may extend the spectrum of etiological genes and provide new clues for the diagnosis and treatment of patients with asthenozoospermia.


Assuntos
Astenozoospermia/genética , Axonema/química , Dineínas/genética , Adulto , Alelos , Simulação por Computador , Regulação para Baixo/genética , Desenvolvimento Embrionário/genética , Flagelos/genética , Humanos , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/química , Espermatozoides/citologia , Espermatozoides/ultraestrutura , Sequenciamento do Exoma
11.
J Med Genet ; 56(10): 678-684, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31151990

RESUMO

BACKGROUND: Multiple morphological abnormalities of the sperm flagella (MMAF) is a kind of severe teratozoospermia. Patients with the MMAF phenotype are infertile and present aberrant spermatozoa with absent, short, coiled, bent and/or irregular flagella. Mutations in several genes can explain approximately 30%-50% of MMAF cases and more genetic pathogenies need to be explored. SPEF2 was previously demonstrated to play an essential role in sperm tail development in mice and pig. Dysfunctional mutations in SPEF2 impair sperm motility and cause a short-tail phenotype in both animal models. OBJECTIVE: Based on 42 patients with severe infertility and MMAF phenotype, we explored the new genetic cause of human MMAF phenotype. METHODS AND RESULTS: By screening gene variants in 42 patients with MMAF using whole exome sequencing, we identified the c. 12delC, c. 1745-2A > G, c. 4102 G > T and c. 4323dupA mutations in the SPEF2 gene from two patients. Both of these mutations are rare and potentially deleterious. Transmission electron microscope (TEM) analysis showed a disrupted axonemal structure with mitochondrial sheath defects in the patients' spermatozoa. The SPEF2 protein level was significantly decreased in the spermatozoa of the patients revealed by Western blot (WB) and immunofluorescence (IF) analyses. CONCLUSION: Our experimental findings indicate that loss-of-function mutations in the SPEF2 gene can cause the MMAF phenotype in human.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Infertilidade Masculina/genética , Mutação com Perda de Função , Anormalidades Múltiplas/diagnóstico por imagem , Axonema/patologia , Humanos , Infertilidade Masculina/diagnóstico por imagem , Masculino , Fenótipo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Espermatozoides/patologia , Sequenciamento do Exoma
12.
Proc Natl Acad Sci U S A ; 114(18): 4816-4821, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28424251

RESUMO

Estrogen and progesterone coupled with locally produced signaling molecules are essential for embryo implantation. However, the hierarchical landscape of the molecular pathways that governs this process remains largely unexplored. Here we show that the protein tyrosine phosphatase Shp2, a positive transducer of RTK signaling, is predominately localized in the nuclei in the periimplantation mouse uterus. Uterine-specific deletion of Shp2 exhibits reduced progesterone receptor (PR) expression and progesterone resistance, which derails normal uterine receptivity, leading to complete implantation failure in mice. Notably, the PR expression defects are attributed to the limited estrogen receptor α (ERα) activation in uterine stroma. Further analysis reveals that nuclear Shp2, rather than cytosolic Shp2, promotes the ERα transcription activity. This function is achieved by enhancing the Src kinase-mediated ERα tyrosine phosphorylation, which facilitates ERα binding to Pgr promoter in an ERK-independent manner in periimplantation uteri. Besides uncovering a regulatory mechanism, this study could be clinically relevant to dysfunctional ERα-caused endometrial disorders in women.


Assuntos
Núcleo Celular/enzimologia , Implantação do Embrião/fisiologia , Receptor alfa de Estrogênio/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Útero/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Núcleo Celular/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Quinases da Família src/genética
13.
Clin Genet ; 95(5): 590-600, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811583

RESUMO

Multiple morphological abnormalities of flagella (MMAF) is one kind of severe teratozoospermia. Gene mutations reported in previous works only revealed the pathogenesis of approximately half of the MMAF cases, and more genetic defects in MMAF need to be explored. In the present study, we performed a genetic analysis on Han Chinese men with MMAF using whole-exome sequencing. After filtering out the cases with known gene mutations, we identified five novel mutation sites in the DNAH2 gene in three cases from three families. These mutations were validated through Sanger sequencing and absent in all control individuals. In silico analysis revealed that these DNAH2 variations are deleterious. The spermatozoa with DNAH2 mutations showed severely disarranged axonemal structures with mitochondrial sheath defection. The DNAH2 protein level was significantly decreased and inner dynein arms were absent in the spermatozoa of patients. ICSI treatment was performed for two MMAF patients with DNAH2 mutations and the associated couples successfully achieved pregnancy, indicating good nuclear quality of the sperm from the DNAH2 mutant patients. Together, these data suggest that the DNAH2 mutation can cause severe sperm flagella defects that damage sperm motility. These results provide a novel genetic pathogeny for the human MMAF phenotype.


Assuntos
Dineínas do Axonema/genética , Estudos de Associação Genética , Mutação/genética , Cauda do Espermatozoide/patologia , Teratozoospermia/genética , Sequência de Bases , Sequência Consenso , Dineínas/metabolismo , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Cauda do Espermatozoide/ultraestrutura , Sequenciamento do Exoma
14.
FASEB J ; 31(12): 5530-5542, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842424

RESUMO

Our previous studies have found that Growth factor receptor-bound protein 2-associated binding protein 2 (Gab2)-a docking protein-governs the development of fatty liver disease. Here, we further demonstrate that Gab2 mediates hepatocarcinogenesis. Compared with a faint expression in para-carcinoma tissue, Gab2 was highly expressed in ∼60-70% of human hepatocellular carcinoma (HCC) specimens. Deletion of Gab2 dramatically suppressed diethylnitrosamine-induced HCC in mice. The oncogenic effects of Gab2 in HepG2 cells were promoted by Gab2 overexpression but were rescued by Gab2 knockdown. Furthermore, Gab2 knockout in HepG2 cells restrained cell proliferation, migration and tumor growth in nude mice. Signaling pathway analysis with protein kinase inhibitors demonstrated that oncogenic regulation by Gab2 in hepatic cells involved multiple signaling molecules, including ERK, Akt, and Janus kinases (Jaks), especially those that mediate inflammatory signaling. IL-6 signaling was increased by Gab2 overexpression and impaired by Gab2 deletion via regulation of Jak2 and signal transducer and activator of transcription 3 phosphorylation and the expression of downstream genes, such as Bcl-2 (B-cell lymphoma 2), c-Myc, MMP7 (matrix metalloproteinase-7), and cyclin D1in vitro and in vivo These data indicate that Gab2 mediates the pathologic progression of HCC by integrating multiple signaling pathways and suggest that Gab2 might be a powerful therapeutic target for HCC.-Cheng, J., Zhong, Y., Chen, S., Sun, Y., Huang, L., Kang, Y., Chen, B., Chen, G., Wang, F., Tian, Y., Liu, W., Feng, G.-S., Lu, Z. Gab2 mediates hepatocellular carcinogenesis by integrating multiple signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Movimento Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transdução de Sinais/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Econ Entomol ; 109(2): 588-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26791819

RESUMO

Cotesia ruficrus (Haliday), a gregarious larval endoparasitoid, is an important biological control agent of various pest species. The developmental interactions between the host rice leaf folder, Cnaphalocrocis medinalis (Guenée), and its koinobiont parasitoid, C. ruficrus, were investigated for the first time under laboratory conditions. The effects of host instar at parasitization on the development time, clutch size, and survival of C. ruficrus were determined. The results showed that the parasitoids starting parasitism in the fourth-instar larvae had the shortest development duration and highest fecundity. Meanwhile, the growth of the host parasitized by C. ruficrus in various instars was also observed. The results indicated that the growth of the parasitized larvae was significantly inhibited, compared with unparasitized ones, irrespective of the host instar at oviposition. In addition, the effect of parasitism on food consumption and utilization of the fourth-instar larvae was determined, suggesting that the nutritional physiology of the host was affected by parasitism. Wet or dry weight gain, food consumption, and fecal matter were all significantly reduced in the parasitized larvae in contrast with the unparasitized larvae. Parasitization by C. ruficrus could significantly increase the approximate digestibility of the host.


Assuntos
Interações Hospedeiro-Parasita , Mariposas/parasitologia , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Ingestão de Alimentos , Feminino , Larva/crescimento & desenvolvimento , Larva/parasitologia , Masculino , Mariposas/crescimento & desenvolvimento
16.
Virol J ; 11: 55, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24661747

RESUMO

BACKGROUND: Southern rice black-streaked dwarf virus (SRBSDV) is a recently discovered member of the genus Fijivirus and it is transmitted by the rice whitebacked planthopper (WBPH), Sogatella furcifera (Horváth). It was found that SRBSDV infected vectors might contribute negatively to the WBPH population, although the longer nymphal period might benefit viral acquisition, transmission and increase infection rate. The interaction between SRBSDV and its vector need to be further explored to gain better understanding of the dispersal of WBPH and the spread of virus disease, in particular the feeding and reproduction behavior of viruliferous WBPH. METHODS: Newly hatched nymphs of WBPH were fed on healthy rice plant after feeding on SRBSDV-infected rice plants for 2 h, and newly emerged adults were numbered and tested. Feeding behaviors of WBPH adults were monitored electronically within a Faraday cage using a Giga-4 DC EPG amplifier. The newly emerged adults were paired, and the fecundity and egg hatchability were investigated. WBPH was molecularly identified for SRBSDV when they dead. According to the identification results, data on viruliferous and non-viruliferous WBPH were collected and analyzed. RESULTS: Feeding behavior of viruliferous WBPH was different from those of non-viruliferous WBPH. Frequency of phloem sap ingestion of viruliferous WBPH increased significantly, however the total feeding duration did not increase markedly. When both WBPH parents were infected with SRBSDV, their fecundity and hatchability of the eggs produced were significant lower than those of normal WBPH parents. However, if only one of the parents was viruliferous, fecundity and egg hatchability were only slightly affected. CONCLUSIONS: Viruliferous WBPH fed on the phloem more frequently than non-viruliferous WBPH and can thus contribute to virus transmission. When both vector parents are viruliferous fecundity and hatchability of the eggs were significantly reduced. However when only one of the parents WBPH was viruliferous, there were no significant effects.


Assuntos
Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores , Reoviridae/isolamento & purificação , Animais , Fertilidade , Comportamento Sexual Animal
17.
J Econ Entomol ; 107(4): 1618-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195455

RESUMO

The brown planthopper, Nilaparvata lugens (Stål), is one of the most important insect pests on paddy rice in tropical and temperate Asia. Overuse and misuse of insecticides have resulted in the development of high resistance to many different insecticides in this pest. Studies were conducted to evaluate the change of resistance level to four insecticides over 15 generations without any exposure to insecticides in brown planthopper. After 15 generations' rearing without exposure to insecticide, brown planthopper could reverse the resistance to imidacloprid, chlorpyrifos, fipronil, and fenobucarb. The range and style of resistance reversal of brown planthopper differed when treated with four different insecticides. To monitor potential changes in insect physiological responses, we measured the activity of each of the three selected enzymes, including acetylcholinesterases (AChE), general esterases (EST), and glutathione S-transferases. After multiple generations' rearing without exposure to insecticide, AChE and EST activities of brown planthopper declined with the increased generations, suggesting that the brown planthopper population adjusted activities of EST and AChE to adapt to the non-insecticide environment. These findings suggest that the reducing, temporary stop, or rotation of insecticide application could be incorporated into the brown planthopper management.


Assuntos
Hemípteros/enzimologia , Resistência a Inseticidas , Animais , Feminino
18.
FEBS J ; 291(1): 142-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786383

RESUMO

Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Humanos , Gravidez , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Estrogênios , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Células Estromais/metabolismo
19.
Plants (Basel) ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256738

RESUMO

Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.

20.
Rice (N Y) ; 17(1): 9, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244131

RESUMO

Rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most serious pests on rice. At present, chemical control is the main method for controlling this pest. However, the indiscriminate use of chemical insecticides has non-target effects and may cause environmental pollution. Besides, leaf curling behavior by C. medinalis may indirectly reduce the efficacy of chemical spray. Therefore, it is crucial to cultivate efficient rice varieties resistant to this pest. Previous studies have found that three different rice varieties, Zhongzao39 (ZZ39), Xiushui134 (XS134), and Yongyou1540 (YY1540), had varying degrees of infestation by C. medinalis. However, it is currently unclear whether the reason for this difference is related to the difference in defense ability of the three rice varieties against the infestation of C. medinalis. To explore this issue, the current study investigated the effects of three rice varieties on the growth performance and food utilization capability of the 4th instar C. medinalis. Further, it elucidated the differences in defense responses among different rice varieties based on the differences in leaf physiological and biochemical indicators and their impact on population occurrence. The results showed that the larval survival rate was the lowest, and the development period was significantly prolonged after feeding on YY1540. This was not related to the differences in leaf wax, pigments, and nutritional components among the three rice varieties nor to the feeding preferences of the larvae. The rate of superoxide anion production, hydrogen peroxide content, and the activity of three protective enzymes were negatively correlated with larval survival rate, and they all showed the highest in YY1540 leaves. Compared to other tested varieties, although the larvae feeding on YY1540 had higher conversion efficiency of ingested food and lower relative consumption rate, their relative growth was faster, indicating stronger food utilization capability. However, they had a lower accumulation of protein. This suggests that different rice varieties had different levels of oxidative stress after infestation by C. medinalis. The defense response of YY1540 was more intense, which was not conducive to the development of the larvae population. These results will provide new insights into the interaction mechanism between different rice varieties and C. medinalis and provide a theoretical basis for cultivating rice varieties resistant to this pest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA