Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981481

RESUMO

All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.

2.
Adv Sci (Weinh) ; 9(13): e2104682, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240008

RESUMO

Direct cell reprogramming, also called transdifferentiation, is valuable for cell fate studies and regenerative medicine. Current approaches to transdifferentiation are usually achieved by directly targeting the nuclear functions, such as manipulating the lineage-specific transcriptional factors, microRNAs, and epigenetic modifications. Here, a robust method to convert fibroblasts to neurons through targeting the cytoskeleton followed by exposure to lineage-specification surroundings is reported. Treatment of human foreskin fibroblasts with a single molecule inhibitor of the actomyosin contraction, can disrupt the cytoskeleton, promote cell softening and nuclear export of YAP/TAZ, and induce a neuron-like state. These neuron-like cells can be further converted into mature neurons, while single-cell RNA-seq shows the homogeneity of these cells during the induction process. Finally, transcriptomic analysis shows that cytoskeletal disruption collapses the original lineage expression profile and evokes an intermediate state. These findings shed a light on the underestimated role of the cytoskeleton in maintaining cell identity and provide a paradigm for lineage conversion through the regulation of mechanical properties.


Assuntos
Transdiferenciação Celular , Fibroblastos , Diferenciação Celular , Reprogramação Celular , Fibroblastos/fisiologia , Humanos , Neurônios
3.
Fundam Res ; 2(6): 836-842, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933374

RESUMO

Glutaric aciduria type I (GA-I) is an autosomal recessive genetic disorder caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Patients who do not receive proper treatment may die from acute encephalopathic crisis. Current treatments for GA-I include a low-lysine diet combined with oral supplementation of L-carnitine. A mouse model of Gcdh c.422_428del/c.422_428del (Gcdh -/-) was generated in our laboratory using CRISPR/Cas9. Gcdh -/- mice had significantly higher levels of glutaric acid (GA) in the plasma, liver, and brain than those in wild-type C57BL/6 mice. When given a high-protein diet (HPD) for two days, approximately 60% of Gcdh -/- mice did not survive the metabolic stress. To evaluate whether GCDH gene replacement therapy could be used to provide sustained treatment for patients with GA-1, we prepared a recombinant adeno-associated virus (rAAV) carrying a human GCDH expression cassette and injected it into Gcdh -/- neonates for a proof-of-concept (PoC) study. Our study demonstrated that delivering rAAV to the central nervous system (CNS), but not the peripheral system, significantly increased the survival rate under HPD exposure. Our study also demonstrated that rAAVPHP.eB mediated a higher efficiency than that of rAAV9 in increasing the survival rate. Surviving mice showed dose-dependent GCDH protein expression in the CNS and downregulation of GA levels. Our study demonstrated that AAV-based gene replacement therapy was effective for GA-I treatment and provided a feasible solution for this unmet medical need.

4.
Fundam Res ; 2(1): 37-47, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933917

RESUMO

Fibrosis can occur in almost all tissues and organs and affects normal physiological function, which may have serious consequences, such as organ failure. However, there are currently no effective, broad-spectrum drugs suitable for clinical application. Revealing the process of fibrosis is an important prerequisite for the development of new therapeutic targets and drugs. Studies have shown that the limiting of myofibroblast activation or the promoting of their elimination can ameliorate fibrosis. However, it has not been reported whether a direct decrease in cell contraction can inhibit fibrosis in vivo. Here, we have shown that (-)-blebbistatin (Ble), a non-muscle myosin Ⅱ inhibitor, displayed significant inhibition of liver fibrosis in different chronic injury mouse models in vivo. We found that Ble reduced the stiffness of fibrotic tissues from the early stage, which reduced the extent of myofibroblast activation induced by a stiffer extracellular matrix (ECM). Moreover, Ble also reduced the activation of myofibroblasts induced by TGF-ß1, which is the most potent pro-fibrotic cytokine. Mechanistically, Ble reduced mechanical contraction, which inhibited the assembly of stress fibers, decreased the F/G-actin ratio, and led to the exnucleation of YAP1 and MRTF-A. Finally, we verified its broad-spectrum antifibrotic effect in multiple models of organ fibrosis. Our results highlighted the important role of mechanical contraction in myofibroblast activation and maintenance, rather than just a characteristic of activation, suggesting that it may be a potential target to explore broad-spectrum drugs for the treatment of fibrotic diseases.

5.
Int J Biol Macromol ; 129: 1047-1055, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240713

RESUMO

Peroxiredoxin (Prx, EC 1.11.1.15) is a family of the thiol-dependent antioxidant enzyme. In this study, a cold-adapted Prx gene from Antarctic psychrophilic bacterium Psychrobacter sp. ANT206 (PsPrx) consisted of an open reading frame (ORF) of 567 bp was cloned. Amino acid sequence analysis revealed that PsPrx contained one catalytic site (Thr45, Cys48 and Arg121) and could be categorized as a typical 2-Cys Prx. Compared with the mesophilic StPrx, PsPrx with a reduced amount of hydrogen bonds and salt bridges and other characteristics, may be responsible for its enzymatic stability and flexibility at low temperature. The recombinant PsPrx (rPsPrx) was purified to homogeneity by Ni-NTA and its enzymatic characterization was described. Interestingly, rPsPrx exhibited the maximum activity at 30 °C and remained 42.6% of its maximum activity at 0 °C. rPsPrx was a salt-tolerance enzyme that showed 42.2% of its maximum activity under 2.5 M NaCl. The kinetic parameters of different substrates revealed that it could efficiently catalyze the peroxides, especially H2O2 and t-BOOH (tert­butyl hydroperoxide). Moreover, rPsPrx exhibited the ability to protect super-coiled DNA from oxidative damage. These results indicated that rPsPrx has special catalytic properties and may be a promising candidate for food and industrial applications.


Assuntos
Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Psychrobacter/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Temperatura Baixa , DNA Bacteriano/metabolismo , Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Peroxirredoxinas/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Psychrobacter/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA