Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 20(34): 345703, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19652276

RESUMO

A growing number of atomic force microscope (AFM) applications make use of metal-coated probes. Probe metallization can cause adverse side-effects and disadvantages such as stress-induced cantilever bending, thermal expansion mismatch, increased tip radius and limited device lifetime due to coating wear. In this study we demonstrate how to overcome these limitations using microstructural design to create a metallic glass thin film alloy, from which monostructural all-metal AFM cantilevers are fabricated. A detailed compositional study of co-sputtered Cu-Hf films is performed using x-ray diffraction (XRD), nanoindentation, four-point probe and in situ multi-beam optical stress sensing (MOSS). Metallic glass Cu(90)Hf(10) films are found to possess an optimal combination of electrical resistivity (96 microOmega cm), nanoindentation hardness (5.2 GPa), ductility and incremental stress. A continuum model is developed which uses measured MOSS data to predict cantilever warping caused by stress gradients generated during film growth. Subsequently, a microfabrication process is developed to create Cu(90)Hf(10) AFM probes. Uncurled, 1 microm thick cantilevers having lengths of 100-400 microm are fabricated, with tip radii ranging from 10 to 40 nm. As a proof of principle, these all-metal Cu-Hf AFM probes are mounted in a commercial AFM and used to successfully image a known test structure.

2.
Sci Rep ; 6: 30973, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498698

RESUMO

Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100-xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA