Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032603

RESUMO

In a healthy pancreas, pancreatic stellate cells (PaSCs) synthesize the basement membrane, which is mainly composed of type IV collagen and laminin. In chronic pancreatitis (CP), PaSCs are responsible for the production of a rigid extracellular matrix (ECM) that is mainly composed of fibronectin and type I/III collagen. Reactive oxygen species evoke the formation of the rigid ECM by PaSCs. One source of reactive oxygen species is NADPH oxidase (Nox) enzymes. Nox1 up-regulates the expression of Twist1 and matrix metalloproteinase-9 (MMP-9) in PaSCs from mice with CP. This study determined the functional relationship between Twist1 and MMP-9, and other PaSC-produced proteins, and the extent to which Twist1 regulates digestion of ECM proteins in CP. Twist1 induced the expression of MMP-9 in mouse PaSCs. The action of Twist1 was not selective to MMP-9 because Twist1 induced the expression of types I and IV collagen, fibronectin, transforming growth factor, and α-smooth muscle actin. Using luciferase assay, Twist1 in human primary PaSCs increased the expression of MMP-9 at the transcriptional level in an NF-κB dependent manner. The digestion of type I/III collagen by MMP-9 secreted by PaSCs from mice with CP depended on Twist1. Thus, Twist1 in PaSCs from mice with CP induces rigid ECM production and MMP-9 transcription in an NF-κB-dependent mechanism that selectively displays proteolytic activity toward type I/III collagen.

2.
Cancers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672675

RESUMO

Diet-induced obesity (DIO) promotes pancreatic ductal adenocarcinoma (PDAC) in mice expressing KRasG12D in the pancreas (KC mice), but the precise mechanisms remain unclear. Here, we performed multiplex quantitative proteomic and phosphoproteomic analysis by liquid chromatography-tandem mass spectrometry and further bioinformatic and spatial analysis of pancreas tissues from control-fed versus DIO KC mice after 3, 6, and 9 months. Normal pancreatic parenchyma and associated proteins were steadily eliminated and the novel proteins, phosphoproteins, and signaling pathways associated with PDAC tumorigenesis increased until 6 months, when most males exhibited cancer, but females did not. Differentially expressed proteins and phosphoproteins induced by DIO revealed the crucial functional role of matrisomal proteins, which implies the roles of upstream regulation by TGFß, extracellular matrix-receptor signaling to downstream PI3K-Akt-mTOR-, MAPK-, and Yap/Taz activation, and crucial effects in the tumor microenvironment such as metabolic alterations and signaling crosstalk between immune cells, cancer-associated fibroblasts (CAFs), and tumor cells. Staining tissues from KC mice localized the expression of several prognostic PDAC biomarkers and elucidated tumorigenic features, such as robust macrophage infiltration, acinar-ductal metaplasia, mucinous PanIN, distinct nonmucinous atypical flat lesions (AFLs) surrounded by smooth muscle actin-positive CAFs, invasive tumors with epithelial-mesenchymal transition arising close to AFLs, and expanding deserted areas by 9 months. We next used Nanostring GeoMX to characterize the early spatial distribution of specific immune cell subtypes in distinct normal, stromal, and PanIN areas. Taken together, these data richly contextualize DIO promotion of Kras-driven PDAC tumorigenesis and provide many novel insights into the signaling pathways and processes involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA