Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985768

RESUMO

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Assuntos
Vesículas Sinápticas , Sinaptogirinas , Sinaptofisina , Animais , Sinaptofisina/metabolismo , Sinaptofisina/genética , Vesículas Sinápticas/metabolismo , Camundongos , Sinaptogirinas/metabolismo , Sinaptogirinas/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Camundongos Knockout , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ratos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
2.
Glia ; 72(8): 1469-1483, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38771121

RESUMO

Myelination is the terminal step in a complex and precisely timed program that orchestrates the proliferation, migration and differentiation of oligodendroglial cells. It is thought that Sonic Hedgehog (Shh) acting on Smoothened (Smo) participates in regulating this process, but that these effects are highly context dependent. Here, we investigate oligodendroglial development and remyelination from three specific transgenic lines: NG2-CreERT2 (control), Smofl/fl/NG2-CreERT2 (loss of function), and SmoM2/NG2-CreERT2 (gain of function), as well as pharmacological manipulation that enhance or inhibit the Smo pathway (Smoothened Agonist (SAG) or cyclopamine treatment, respectively). To explore the effects of Shh/Smo on differentiation and myelination in vivo, we developed a highly quantifiable model by transplanting oligodendrocyte precursor cells (OPCs) in the retina. We find that myelination is greatly enhanced upon cyclopamine treatment and hypothesize that Shh/Smo could promote OPC proliferation to subsequently inhibit differentiation. Consistent with this hypothesis, we find that the genetic activation of Smo significantly increased numbers of OPCs and decreased oligodendrocyte differentiation when we examined the corpus callosum during development and after cuprizone demyelination and remyelination. However, upon loss of function with the conditional ablation of Smo, myelination in the same scenarios are unchanged. Taken together, our present findings suggest that the Shh pathway is sufficient to maintain OPCs in an undifferentiated state, but is not necessary for myelination and remyelination.


Assuntos
Diferenciação Celular , Proteínas Hedgehog , Camundongos Transgênicos , Bainha de Mielina , Células Precursoras de Oligodendrócitos , Receptor Smoothened , Animais , Proteínas Hedgehog/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Bainha de Mielina/metabolismo , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia , Camundongos , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 116(27): 13602-13610, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31152131

RESUMO

Here, we investigated the properties of presynaptic N-methyl-d-aspartate receptors (pre-NMDARs) at corticohippocampal excitatory connections between perforant path (PP) afferents and dentate granule cells (GCs), a circuit involved in memory encoding and centrally affected in Alzheimer's disease and temporal lobe epilepsy. These receptors were previously reported to increase PP release probability in response to gliotransmitters released from astrocytes. Their activation occurred even under conditions of elevated Mg2+ and lack of action potential firing in the axons, although how this could be accomplished was unclear. We now report that these pre-NMDARs contain the GluN3a subunit conferring them low Mg2+ sensitivity. GluN3a-containing NMDARs at PP-GC synapses are preponderantly presynaptic vs. postsynaptic and persist beyond the developmental period. Moreover, they are expressed selectively at medial-not lateral-PP axons and act to functionally enhance release probability specifically of the medial perforant path (MPP) input to GC dendrites. By controlling release probability, GluN3a-containing pre-NMDARs also control the dynamic range for long-term potentiation (LTP) at MPP-GC synapses, an effect requiring Ca2+ signaling in astrocytes. Consistent with the functional observations, GluN3a subunits in MPP terminals are localized at sites away from the presynaptic release sites, often facing astrocytes, in line with a primary role for astrocytic inputs in their activation. Overall, GluN3A-containing pre-NMDARs emerge as atypical modulators of dendritic computations in the MPP-GC memory circuit.


Assuntos
Astrócitos/fisiologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Pré-Sinápticos/fisiologia , Animais , Autorreceptores/metabolismo , Autorreceptores/fisiologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Vias Neurais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362317

RESUMO

Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.


Assuntos
Hipocampo , Receptores de AMPA , Camundongos , Animais , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Sinapses/metabolismo , Dendritos/metabolismo
5.
J Neurosci ; 40(45): 8604-8617, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046543

RESUMO

The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca2+-induced increase in presynaptic cAMP that is mediated by Ca2+-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by ß-adrenergic receptors (ßARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that ßARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these ßARs occluded PF-PC LTP, while the ß1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in Epac2-/- mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the ßAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP.SIGNIFICANCE STATEMENT G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to ß-adrenergic receptor (ßAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by ßARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this ßAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of ßARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Vesículas Sinápticas/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cerebelo/citologia , Cerebelo/metabolismo , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Células de Purkinje/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
6.
Cereb Cortex ; 30(2): 505-524, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31240311

RESUMO

Phosphatase and tensin homolog on chromosome 10 (PTEN) is a tumor suppressor and autism-associated gene that exerts an important influence over neuronal structure and function during development. In addition, it participates in synaptic plasticity processes in adulthood. As an attempt to assess synaptic and developmental mechanisms by which PTEN can modulate cognitive function, we studied the consequences of 2 different genetic manipulations in mice: presence of additional genomic copies of the Pten gene (Ptentg) and knock-in of a truncated Pten gene lacking its PDZ motif (Pten-ΔPDZ), which is required for interaction with synaptic proteins. Ptentg mice exhibit substantial microcephaly, structural hypoconnectivity, enhanced synaptic depression at cortico-amygdala synapses, reduced anxiety, and intensified social interactions. In contrast, Pten-ΔPDZ mice have a much more restricted phenotype, with normal synaptic connectivity, but impaired synaptic depression at cortico-amygdala synapses and virtually abolished social interactions. These results suggest that synaptic actions of PTEN in the amygdala contribute to specific behavioral traits, such as sociability. Also, PTEN appears to function as a bidirectional rheostat in the amygdala: reduction in PTEN activity at synapses is associated with less sociability, whereas enhanced PTEN activity accompanies hypersocial behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal , PTEN Fosfo-Hidrolase/fisiologia , Comportamento Social , Tonsila do Cerebelo/ultraestrutura , Animais , Feminino , Hipocampo/fisiologia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Sinapses/fisiologia , Sinapses/ultraestrutura
7.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681766

RESUMO

G protein-gated inwardly rectifying K+ (GIRK) channels are the main targets controlling excitability and synaptic plasticity on hippocampal neurons. Consequently, dysfunction of GIRK-mediated signalling has been implicated in the pathophysiology of Alzheimer´s disease (AD). Here, we provide a quantitative description on the expression and localisation patterns of GIRK2 in two transgenic mice models of AD (P301S and APP/PS1 mice), combining histoblots and immunoelectron microscopic approaches. The histoblot technique revealed differences in the expression of GIRK2 in the two transgenic mice models. The expression of GIRK2 was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered in APP/PS1 mice at 12 months compared to age-matched wild type mice. Ultrastructural approaches using the pre-embedding immunogold technique, demonstrated that the subcellular localisation of GIRK2 was significantly reduced along the neuronal surface of CA1 pyramidal cells, but increased in its frequency at cytoplasmic sites, in both P301S and APP/PS1 mice. We also found a decrease in plasma membrane GIRK2 channels in axon terminals contacting dendritic spines of CA1 pyramidal cells in P301S and APP/PS1 mice. These data demonstrate for the first time a redistribution of GIRK channels from the plasma membrane to intracellular sites in different compartments of CA1 pyramidal cells. Altogether, the pre- and post-synaptic reduction of GIRK2 channels suggest that GIRK-mediated alteration of the excitability in pyramidal cells could contribute to the cognitive dysfunctions as described in the two AD animal models.


Assuntos
Doença de Alzheimer/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Hipocampo/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Membrana Celular/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Presenilina-1/genética , Proteínas tau/genética
8.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070808

RESUMO

Metabotropic glutamate receptor subtype 5 (mGlu5) is implicated in the pathophysiology of Alzheimer´s disease (AD). However, its alteration at the subcellular level in neurons is still unexplored. Here, we provide a quantitative description on the expression and localisation patterns of mGlu5 in the APP/PS1 model of AD at 12 months of age, combining immunoblots, histoblots and high-resolution immunoelectron microscopic approaches. Immunoblots revealed that the total amount of mGlu5 protein in the hippocampus, in addition to downstream molecules, i.e., Gq/11 and PLCß1, was similar in both APP/PS1 mice and age-matched wild type mice. Histoblots revealed that mGlu5 expression in the brain and its laminar expression in the hippocampus was also unaltered. However, the ultrastructural techniques of SDS-FRL and pre-embedding immunogold demonstrated that the subcellular localisation of mGlu5 was significantly reduced along the neuronal surface of hippocampal principal cells, including CA1 pyramidal cells and DG granule cells, in APP/PS1 mice at 12 months of age. The decrease in the surface localisation of mGlu5 was accompanied by an increase in its frequency at intracellular sites in the two neuronal populations. Together, these data demonstrate, for the first time, a loss of mGlu5 at the plasma membrane and accumulation at intracellular sites in different principal cells of the hippocampus in APP/PS1 mice, suggesting an alteration of the excitability and synaptic transmission that could contribute to the cognitive dysfunctions in this AD animal model. Further studies are required to elucidate the specificity of mGlu5-associated molecules and downstream signalling pathways in the progression of the pathology.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Membrana Celular/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Membrana Celular/patologia , Modelos Animais de Doenças , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Células Piramidais/patologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Transmissão Sináptica
9.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769380

RESUMO

Despite the well-accepted role of the two main neuropathological markers (ß-amyloid and tau) in the progression of Alzheimer's disease, the interaction and specific contribution of each of them is not fully elucidated. To address this question, in the present study, an adeno-associated virus (AAV9) carrying the mutant P301L form of human tau, was injected into the dorsal hippocampi of APP/PS1 transgenic mice or wild type mice (WT). Three months after injections, memory tasks, biochemical and immunohistochemical analysis were performed. We found that the overexpression of hTauP301L accelerates memory deficits in APP/PS1 mice, but it did not affect memory function of WT mice. Likewise, biochemical assays showed that only in the case of APP/PS1-hTauP301L injected mice, an important accumulation of tau was observed in the insoluble urea fraction. Similarly, electron microscopy images revealed that numerous clusters of tau immunoparticles appear at the dendrites of APP/PS1 injected mice and not in WT animals, suggesting that the presence of amyloid is necessary to induce tau aggregation. Interestingly, these tau immunoparticles accumulate in dendritic mitochondria in the APP/PS1 mice, whereas most of mitochondria in WT injected mice remain free of tau immunoparticles. Taken together, it seems that amyloid induces tau aggregation and accumulation in the dendritic mitochondria and subsequently may alter synapse function, thus, contributing to accelerate cognitive decline in APP/PS1 mice.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/efeitos adversos , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Mitocôndrias/patologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fosforilação , Presenilina-1/fisiologia , Sinapses , Proteínas tau/genética
10.
Hum Mol Genet ; 27(20): 3528-3541, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010864

RESUMO

The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Hipocampo/metabolismo , Memória , Multimerização Proteica , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/fisiologia , Hipocampo/fisiologia , Ratos , Receptor de Glutamato Metabotrópico 5/fisiologia , Transdução de Sinais , Transmissão Sináptica
11.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899153

RESUMO

The K+ channel interacting proteins (KChIPs) are a family of cytosolic proteins that interact with Kv4 channels, leading to higher current density, modulation of channel inactivation and faster recovery from inactivation. Using immunohistochemical techniques at the light and electron microscopic level combined with quantitative analysis, we investigated the cellular and subcellular localisation of KChIP3 and KChIP4 to compare their distribution patterns with those for Kv4.2 and Kv4.3 in the cerebellar cortex. Immunohistochemistry at the light microscopic level demonstrated that KChIP3, KChIP4, Kv4.2 and Kv4.3 proteins were widely expressed in the cerebellum, with mostly overlapping patterns. Immunoelectron microscopic techniques showed that KChIP3, KChIP4, Kv4.2 and Kv4.3 shared virtually the same somato-dendritic domains of Purkinje cells and granule cells. Application of quantitative approaches showed that KChIP3 and KChIP4 were mainly membrane-associated, but also present at cytoplasmic sites close to the plasma membrane, in dendritic spines and shafts of Purkinje cells (PCs) and dendrites of granule cells (GCs). Similarly, immunoparticles for Kv4.2 and Kv4.3 were observed along the plasma membrane and at intracellular sites in the same neuron populations. In addition to the preferential postsynaptic distribution, KChIPs and Kv4 were also distributed presynaptically in parallel fibres and mossy fibres. Immunoparticles for KChIP3, KChIP4 and Kv4.3 were detected in parallel fibres, and KChIP3, KChIP4, Kv4.2 and Kv4.3 were found in parallel fibres, indicating that composition of KChIP and Kv4 seems to be input-dependent. Together, our findings unravelled previously uncharacterised KChIP and Kv4 subcellular localisation patterns in neurons, revealed that KChIP have additional Kv4-unrelated functions in the cerebellum and support the formation of macromolecular complexes between KChIP3 and KChIP4 with heterotetrameric Kv4.2/Kv4.3 channels.


Assuntos
Cerebelo/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Neurônios/metabolismo , Canais de Potássio Shal/metabolismo , Frações Subcelulares/metabolismo , Potenciais Sinápticos , Animais , Masculino , Potenciais da Membrana , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252271

RESUMO

Metabotropic γ-aminobutyric acid (GABAB) receptors contribute to the control of network activity and information processing in hippocampal circuits by regulating neuronal excitability and synaptic transmission. The dysfunction in the dentate gyrus (DG) has been implicated in Alzheimer´s disease (AD). Given the involvement of GABAB receptors in AD, to determine their subcellular localisation and possible alteration in granule cells of the DG in a mouse model of AD at 12 months of age, we used high-resolution immunoelectron microscopic analysis. Immunohistochemistry at the light microscopic level showed that the regional and cellular expression pattern of GABAB1 was similar in an AD model mouse expressing mutated human amyloid precursor protein and presenilin1 (APP/PS1) and in age-matched wild type mice. High-resolution immunoelectron microscopy revealed a distance-dependent gradient of immunolabelling for GABAB receptors, increasing from proximal to distal dendrites in both wild type and APP/PS1 mice. However, the overall density of GABAB receptors at the neuronal surface of these postsynaptic compartments of granule cells was significantly reduced in APP/PS1 mice. Parallel to this reduction in surface receptors, we found a significant increase in GABAB1 at cytoplasmic sites. GABAB receptors were also detected at presynaptic sites in the molecular layer of the DG. We also found a decrease in plasma membrane GABAB receptors in axon terminals contacting dendritic spines of granule cells, which was more pronounced in the outer than in the inner molecular layer. Altogether, our data showing post- and presynaptic reduction in surface GABAB receptors in the DG suggest the alteration of the GABAB-mediated modulation of excitability and synaptic transmission in granule cells, which may contribute to the cognitive dysfunctions in the APP/PS1 model of AD.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-B/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores , Contagem de Células , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Imuno-Histoquímica , Camundongos
13.
J Neurosci ; 38(46): 10002-10015, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30315127

RESUMO

The neuromodulatory effects of GABA on pyramidal neurons are mediated by GABAB receptors (GABABRs) that signal via a conserved G-protein-coupled pathway. Two prominent effectors regulated by GABABRs include G-protein inwardly rectifying K+ (GIRK) and P/Q/N type voltage-gated Ca2+ (CaV2) ion channels that control excitability and synaptic output of these neurons, respectively. Regulator of G-protein signaling 7 (RGS7) has been shown to control GABAB effects, yet the specificity of its impacts on effector channels and underlying molecular mechanisms is poorly understood. In this study, we show that hippocampal RGS7 forms two distinct complexes with alternative subunit configuration bound to either membrane protein R7BP (RGS7 binding protein) or orphan receptor GPR158. Quantitative biochemical experiments show that both complexes account for targeting nearly the entire pool of RGS7 to the plasma membrane. We analyzed the effect of genetic elimination in mice of both sexes and overexpression of various components of RGS7 complex by patch-clamp electrophysiology in cultured neurons and brain slices. We report that RGS7 prominently regulates GABABR signaling to CaV2, in addition to its known involvement in modulating GIRK. Strikingly, only complexes containing R7BP, but not GPR158, accelerated the kinetics of both GIRK and CaV2 modulation by GABABRs. In contrast, GPR158 overexpression exerted the opposite effect and inhibited RGS7-assisted temporal modulation of GIRK and CaV2 by GABA. Collectively, our data reveal mechanisms by which distinctly composed macromolecular complexes modulate the activity of key ion channels that mediate the inhibitory effects of GABA on hippocampal CA1 pyramidal neurons.SIGNIFICANCE STATEMENT This study identifies the contributions of distinct macromolecular complexes containing a major G-protein regulator to controlling key ion channel function in hippocampal neurons with implications for understanding molecular mechanisms underlying synaptic plasticity, learning, and memory.


Assuntos
Caveolina 2/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Proteínas RGS/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Feminino , Insetos , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Inibição Neural/fisiologia
14.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634540

RESUMO

The Kv4 family of voltage-gated K⁺ channels underlie the fast transient (A-type) outward K⁺ current. Although A-type currents are critical to determine somato-dendritic integration in central neurons, relatively little is known about the precise subcellular localisation of the underlying channels in hippocampal circuits. Using histoblot and immunoelectron microscopic techniques, we investigated the expression, regional distribution and subcellular localisation of Kv4.2 and Kv4.3 in the adult brain, as well as the ontogeny of their expression during postnatal development. Histoblot demonstrated that Kv4.2 and Kv4.3 proteins were widely expressed in the brain, with mostly non-overlapping patterns. During development, levels of Kv4.2 and Kv4.3 increased with age but showed marked region- and developmental stage-specific differences. Immunoelectron microscopy showed that labelling for Kv4.2 and Kv4.3 was differentially present in somato-dendritic domains of hippocampal principal cells and interneurons, including the synaptic specialisation. Quantitative analyses indicated that most immunoparticles for Kv4.2 and Kv4.3 were associated with the plasma membrane in dendritic spines and shafts, and that the two channels showed very similar distribution patterns in spines of principal cells and along the surface of granule cells. Our data shed new light on the subcellular localisation of Kv4 channels and provide evidence for their non-uniform distribution over the plasma membrane of hippocampal neurons.


Assuntos
Expressão Gênica , Hipocampo/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Hipocampo/crescimento & desenvolvimento , Hipocampo/ultraestrutura , Imuno-Histoquímica , Espaço Intracelular/metabolismo , Masculino , Camundongos , Transporte Proteico , Ratos
15.
J Physiol ; 596(5): 921-940, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29280494

RESUMO

KEY POINTS: Neurotransmitter release is inhibited by metabotropic glutamate type 7 (mGlu7 ) receptors that reduce Ca2+ influx, yet synapses lacking this receptor also produce weaker release, suggesting that mGlu7 receptors may also prime synaptic vesicles for release. Prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs through a presynaptic effect. The inhibitory response is blocked by pertussis toxin, while the potentiating response is prevented by a phospholipase C inhibitor (U73122) and an inhibitor of diacylglycerol (DAG) binding (calphostin C), suggesting that this receptor also couples to pathways that generate DAG. Release potentiation is associated with an increase in the number of synaptic vesicles close to the plasma membrane, which was dependent on the Munc13-2 and RIM1α proteins. The Glu7 receptors activated by the glutamate released following high frequency stimulation provoke a bidirectional modulation of synaptic transmission. ABSTRACT: Neurotransmitter release is driven by Ca2+ influx at synaptic boutons that acts on synaptic vesicles ready to undergo exocytosis. Neurotransmitter release is inhibited when metabotropic glutamate type 7 (mGlu7 ) receptors provoke a reduction in Ca2+ influx, although the reduced release from synapses lacking this receptor suggests that they may also prime synaptic vesicles for release. These mGlu7 receptors activate phospholipase C (PLC) and generate inositol trisphosphate, which in turn releases Ca2+ from intracellular stores and produces diacylglycerol (DAG), an activator of proteins containing DAG-binding domains such as Munc13 and protein kinase C (PKC). However, the full effects of mGlu7 receptor signalling on synaptic transmission are unclear. We found that prolonged activation of mGlu7 receptors with the agonist l-AP4 first reduces and then enhances the amplitude of EPSCs, a presynaptic effect that changes the frequency but not the amplitude of the mEPSCs and the paired pulse ratio. Pertussis toxin blocks the inhibitory response, while the PLC inhibitor U73122, and the inhibitor of DAG binding calphostin C, prevent receptor mediated potentiation. Moreover, this DAG-dependent potentiation of the release machinery brings more synaptic vesicles closer to the active zone plasma membrane in a Munc13-2- and RIM1α-dependent manner. Electrically evoked release of glutamate that activates mGlu7 receptors also bidirectionally modulates synaptic transmission. In these conditions, potentiation now occurs rapidly and it overcomes any inhibition, such that potentiation prevails unless it is suppressed with the PLC inhibitor U73122.


Assuntos
Região CA1 Hipocampal/fisiologia , Diglicerídeos/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Proteínas de Ligação ao GTP/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naftalenos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Toxina Pertussis/farmacologia , Transdução de Sinais , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores
16.
Cereb Cortex ; 26(11): 4253-4264, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27613437

RESUMO

Dopamine depletion in Parkinson's disease (PD) produces dendritic spine loss in striatal medium spiny neurons (MSNs) and increases their excitability. However, the synaptic changes that occur in MSNs in PD, in particular those induced by chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, are still poorly understood. We exposed BAC-transgenic D1-tomato and D2-eGFP mice to PD and dyskinesia model paradigms, enabling cell type-specific assessment of changes in synaptic physiology and morphology. The distinct fluorescence markers allowed us to identify D1 and D2 MSNs for analysis using intracellular sharp electrode recordings, electron microscopy, and 3D reconstructions with single-cell Lucifer Yellow injections. Dopamine depletion induced spine pruning in both types of MSNs, affecting mushroom and thin spines equally. Dopamine depletion also increased firing rate in both D1- and D2-MSNs, but reduced evoked-EPSP amplitude selectively in D2-MSNs. L-DOPA treatment that produced dyskinesia differentially affected synaptic properties in D1- and D2-MSNs. In D1-MSNs, spine density remained reduced but the remaining spines were enlarged, with bigger heads and larger postsynaptic densities. These morphological changes were accompanied by facilitation of action potential firing triggered by synaptic inputs. In contrast, although L-DOPA restored the number of spines in D2-MSNs, it resulted in shortened postsynaptic densities. These changes in D2-MSNs correlated with a decrease in synaptic transmission. Our findings indicate that L-DOPA-induced dyskinesia is associated with abnormal spine morphology, modified synaptic transmission, and altered EPSP-spike coupling, with distinct effects in D1- and D2-MSNs.


Assuntos
Corpo Estriado/patologia , Discinesia Induzida por Medicamentos/patologia , Levodopa/farmacologia , Neurônios/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Coluna Vertebral/patologia , Animais , Modelos Animais de Doenças , Dopamina/farmacologia , Dopaminérgicos/efeitos adversos , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/etiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Levodopa/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/ultraestrutura , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Coluna Vertebral/ultraestrutura , Simpatolíticos/toxicidade
17.
Proc Natl Acad Sci U S A ; 111(51): 18345-50, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489075

RESUMO

Proalgesic sensitization of peripheral nociceptors in painful syndromes is a complex molecular process poorly understood that involves mobilization of thermosensory receptors to the neuronal surface. However, whether recruitment of vesicular thermoTRP channels is a general mechanism underlying sensitization of all nociceptor types or is subtype-specific remains controversial. We report that sensitization-induced Ca(2+)-dependent exocytotic insertion of transient receptor potential vanilloid 1 (TRPV1) receptors to the neuronal plasma membrane is a mechanism specifically used by peptidergic nociceptors to potentiate their excitability. Notably, we found that TRPV1 is present in large dense-core vesicles (LDCVs) that were mobilized to the neuronal surface in response to a sensitizing insult. Deletion or silencing of calcitonin-gene-related peptide alpha (αCGRP) gene expression drastically reduced proalgesic TRPV1 potentiation in peptidergic nociceptors by abrogating its Ca(2+)-dependent exocytotic recruitment. These findings uncover a context-dependent molecular mechanism of TRPV1 algesic sensitization and a previously unrecognized role of αCGRP in LDCV mobilization in peptidergic nociceptors. Furthermore, these results imply that concurrent secretion of neuropeptides and channels in peptidergic C-type nociceptors facilitates a rapid modulation of pain signaling.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Exocitose/fisiologia , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Inativação Gênica , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Ratos , Ratos Wistar , Substância P/genética
18.
J Neurosci ; 35(47): 15523-38, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609150

RESUMO

Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. SIGNIFICANCE STATEMENT: Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical subunits of NMDARs and AMPARs expressed either in dopamine neurons or in dopamine receptor D1-containing neurons play an important role in the alcohol deprivation effect (the increase in alcohol intake after a period of abstinence) while having no impact on context- plus cue-induced reinstatement of alcohol-seeking responses. Medications targeting glutamatergic neurotransmission by selective inactivation of these glutamate receptors might have therapeutic efficacy.


Assuntos
Alcoolismo/metabolismo , Comportamento Aditivo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores de Glutamato/fisiologia , Área Tegmentar Ventral/metabolismo , Animais , Dopamina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Receptores Dopaminérgicos/deficiência , Receptores de Glutamato/deficiência , Recidiva
19.
J Biol Chem ; 290(22): 13622-39, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25792749

RESUMO

Regulators of G protein signaling control the duration and extent of signaling via G protein-coupled receptor (GPCR) pathways by accelerating the GTP hydrolysis on G protein α subunits thereby promoting termination of GPCR signaling. A member of this family, RGS7, plays a critical role in the nervous system where it regulates multiple neurotransmitter GPCRs that mediate vision, memory, and the action of addictive drugs. Previous studies have established that in vivo RGS7 forms mutually exclusive complexes with the membrane protein RGS7-binding protein or the orphan receptor GPR158. In this study, we examine the impact of GPR158 on RGS7 in the brain. We report that knock-out of GPR158 in mice results in marked post-transcriptional destabilization of RGS7 and substantial loss of its association with membranes in several brain regions. We further identified the RGS7-binding site in the C terminus of GPR158 and found that it shares significant homology with the RGS7-binding protein. The proximal portion of the GPR158 C terminus additionally contained a conserved sequence that was capable of enhancing RGS7 GTPase-activating protein activity in solution by an allosteric mechanism acting in conjunction with the regulators of the G protein signaling-binding domain. The distal portion of the GPR158 C terminus contained several phosphodiesterase E γ-like motifs and selectively recruited G proteins in their activated state. The results of this study establish GPR158 as an essential regulator of RGS7 in the native nervous system with a critical role in controlling its expression, membrane localization, and catalytic activity.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sítio Alostérico , Animais , Células COS , Catálise , Domínio Catalítico , Clonagem Molecular , Biologia Computacional , Citosol/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
20.
Eur J Neurosci ; 43(11): 1460-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26921581

RESUMO

G-protein-coupled inwardly rectifying potassium (GIRK) channels play a crucial role during the migration and maturation of cerebellar granule cells (GCs) in the vermis. In the cerebellar hemispheres, however, only minor effects on the development of GCs are observed in mice with GIRK channel impairment. This regional difference may reflect distinct ontogenetic expression patterns of GIRK channels. Therefore, inwardly rectifying responses in mice were characterized at different stages of development in the vermis and the hemispheres. In the vermis, GCs in the premigratory zone (PMZ) at P7-P15 exhibit GIRK current but not constitutive inwardly rectifying potassium (CIRK) current, and are relatively depolarized at rest. In contrast, premigratory GCs in the hemispheres express only CIRK channels, which accounts for their more hyperpolarized resting membrane potential. Furthermore, the pattern of voltage-dependent inward currents in the PMZ GCs of cerebellar hemispheres is consistent with a more mature stage of development than the corresponding GCs in the vermis, resulting in robust firing properties mediated by sodium channels. Later in development (P21-P22), CIRK current is then observed in the majority of vermis GCs. This developmental pattern, revealed by electrophysiological recordings, was confirmed by immunohistological experiments that showed greater reactivity for GIRK2 in the PMZ of the vermis than in the hemispheres during development (P7-P15). These findings suggest that regional differences in development are responsible for the differential expression of inwardly rectifying potassium channels in the vermis and in the hemispheres.


Assuntos
Vermis Cerebelar/fisiologia , Cerebelo/fisiologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Vermis Cerebelar/metabolismo , Cerebelo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Potenciais da Membrana , Camundongos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA