Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(41): 15336-15347, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37647613

RESUMO

The Inflation Reduction Act (IRA) in the United States provides unprecedented incentives for deploying low-carbon hydrogen and liquid fuels, among other low-greenhouse gas (GHG) emissions technologies. To better understand the prospective competitiveness of low-carbon or negative-carbon hydrogen and liquid fuels under the IRA in the early 2030s, we examined the impacts of the IRA provisions on the costs of producing hydrogen and synthetic liquid fuel made from natural gas, electricity, short-cycle biomass (agricultural residues), and corn-derived ethanol. We determined that, with IRA credits (45V or 45Q) but excluding the incentives provided by other national or state policies, hydrogen produced by electrolysis using carbon-free electricity (green H2) and by natural gas reforming with carbon capture and storage (CCS) (blue H2) is cost-competitive with the carbon-intensive benchmark gray H2, which is produced by steam methane reforming. Biomass-derived H2 with or without CCS is not cost-competitive under the current IRA provisions. However, if the IRA allowed biomass gasification with CCS to claim a 45V credit for carbon-neutral H2 and a 45Q credit for negative biogenic CO2 emissions, this pathway would be less costly than gray H2. The IRA credit for clean fuels (45Z), currently stipulated to end in 2027, would need to be extended or similar policy support would need to be provided by other national or state policies in order for clean synthetic liquid fuel to be cost-competitive with petroleum-derived liquid fuels. The levelized IRA subsidies per unit of CO2 mitigated for all of the hydrogen and synthetic liquid fuel production pathways, except for electricity-derived synthetic liquid fuel, range from $65-$384/t of CO2. These values are within or below the range of the U.S. federal government's estimates of the social cost of carbon (SCC) in the 2030-2040 time frame.

2.
Phys Chem Chem Phys ; 22(14): 7283-7293, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32208480

RESUMO

Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications. Here, the effects of fixed charge group type on anion exchange membrane (AEM) apparent permselectivity and ion transport properties were investigated using two crosslinked AEMs. The two AEMs, containing a similar acrylonitrile, styrene and divinyl benzene-based polymer backbone, had either trimethyl ammonium or 1,4-dimethyl imidazolium fixed charge groups. Membrane deswelling, apparent permselectivity and ion transport properties of the two AEMs were characterized using aqueous solutions of lithium chloride, sodium chloride, ammonium chloride, sodium bromide and sodium nitrate. Apparent permselectivity measurements revealed a minor influence of the fixed charge group type on apparent permselectivity. Further analysis of membrane swelling and ion sorption, however, suggests that less hydrophilic fixed charge groups more effectively exclude co-ions compared to more hydrophilic fixed charge groups. Analysis of ion diffusion properties suggest that ion and fixed charge group enthalpy of hydration properties influence ion transport, likely through a counter-ion condensation, ion pairing or binding mechanism. Interactions between fixed charge groups and counter-ions may be stronger if the enthalpy of hydration properties of the ion and fixed charge group are similar, and suppressed counter-ion diffusion was observed in this situation. In general, the hydration properties of the fixed charge group may be important for understanding how fixed charge group chemistry influences ion transport properties in anion exchange membranes.

3.
J Am Chem Soc ; 141(32): 12804-12814, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348651

RESUMO

Programming the hierarchical self-assembly of small molecules has been a fundamental topic of great significance in biological systems and artificial supramolecular systems. Precise and highly programmed self-assembly can produce supramolecular architectures with distinct structural features. However, it still remains a challenge how to precisely control the self-assembly pathway in a desirable way by introducing abundant structural information into a limited molecular backbone. Here we disclose a strategy that directs the hierarchical self-assembly of sodium thioctate, a small molecule of biological origin, into a highly ordered supramolecular layered network. By combining the unique dynamic covalent ring-opening-polymerization of sodium thioctate and an evaporation-induced interfacial confinement effect, we precisely direct the dynamic supramolecular self-assembly of this simple small molecule in a scheduled hierarchical pathway, resulting in a layered structure with long-range order at both macroscopic and molecular scales, which is revealed by small-angle and wide-angle X-ray scattering technologies. The resulting supramolecular layers are found to be able to bind water molecules as structural water, which works as an interlayer lubricant to modulate the material properties, such as mechanical performance, self-healing capability, and actuating function. Analogous to many reversibly self-assembled biological systems, the highly dynamic polymeric network can be degraded into monomers and reformed by a water-mediated route, exhibiting full recyclability in a facile, mild, and environmentally friendly way. This approach for assembling commercial small molecules into structurally complex materials paves the way for low-cost functional supramolecular materials based on synthetically simple procedures.

4.
Sci Total Environ ; 795: 148832, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247075

RESUMO

The increasing amount of municipal sludge in China requires safe and effective management to protect human health and ensure environmental sustainability. Pyrolysis is a thermochemical process that decomposes organic matter at elevated temperature and under anaerobic conditions, and it has attracted an increasing attention in sludge treatment in the recent years. However, comprehensive environmental and economic assessment of sludge pyrolysis in China's context is rare, due to the small quantities of full-scale sludge pyrolysis plant. In this paper, we applied our design and operation parameters of full-scale sludge pyrolysis plants to generate the material and energy consumptions of the pyrolysis system under various of conditions, including sludge organic content and moisture content, system size, system energy distribution, and whether or not heat substitution is applied. Life cycle assessment and techno-economic assessment were then applied to investigate the environmental and economic performance of the system. Our results demonstrate the significant environmental and economic impacts associated with sludge properties and system size. Generally, sludge with higher organic content and lower moisture content requires less natural gas consumption, which leads to a simultaneous improvement of the system environmental and economic performance. The system economic performance is more sensitive to the system size, and centralized sludge handling using a larger pyrolysis system is more economic favorable. In the most ideal case, the average global warming potential and minimum sludge handling price of sludge pyrolysis could be as low as -32.5 kg CO2-Eq/t DS and 188.8 $/t DS, respectively. Based on these results, we discussed the pathways that could be taken to further optimize the environmental and economic performances of the pyrolysis system.


Assuntos
Pirólise , Esgotos , China , Temperatura Alta , Humanos
5.
ACS Appl Mater Interfaces ; 10(4): 4102-4112, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29314818

RESUMO

A series of triptycene-containing sulfonated polysulfone (TRP-BP) materials was prepared via condensation polymerization, and the desalination membrane-relevant fundamental water and salt transport properties (i.e., sorption, diffusion, and permeability coefficients) of the polymers were characterized. Incorporating triptycene into sulfonated polysulfone increased the water content of the material compared to sulfonated polysulfone materials that do not contain triptycene. No significant difference in salt sorption was observed between TRP-BP membranes and other sulfonated polysulfone membranes, suggesting that the presence of triptycene in the polymer did not dramatically affect thermodynamic interactions between salt and the polymer. Both water and salt diffusion coefficients in the TRP-BP membranes were suppressed relative to other sulfonated polysulfone materials with comparable water content, and these phenomena may result from the influence of triptycene on polymer chain packing and/or free-volume distribution, which could increase the tortuosity of the transport pathways in the polymers. Enhanced water/salt diffusivity selectivity was observed for some of the TRP-BP membranes relative to those materials that did not contain triptycene, and correspondingly, incorporation of triptycene into sulfonated polysulfone resulted in an increase, particularly for acid counterion form TRP-BP materials, in water/salt permeability selectivity, which is favorable for desalination membrane applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA