RESUMO
Diabetes is a chronic medical condition that may induce complications such as poor wound healing. Stem cell therapies have shown promise in treating diabetic wounds with pre-clinical and clinical studies. However, little bibliometric analysis has been carried out on stem cells in the treatment of diabetic wounds. In this study, we retrieved relevant papers published from January 1, 2003, to December 31, 2023, from Chinese and English databases. CiteSpace software was used to analyze the authors, institutions, and keywords by standard bibliometric indicators. Our analysis findings indicated that publications on stem cells in the treatment of diabetic wounds kept increasing. The most prolific author was Qian Cai (n = 7) and Mohammad Bayat (n = 16) in Chinese and English databases, respectively. Institutions distribution analysis showed that Chinese institutions conducted most publications, and the most prolific institution was the Chinese People's Liberation Army General Hospital (n = 9) and Shahid Beheshti University of Medical Sciences (n = 17) in Chinese and English databases, respectively. The highest centrality keyword in Chinese and English databases was "wound healing" (0.54) and "in vitro" (0.13), respectively. There were 8 and 11 efficient and convincing keyword clusters produced by a log-likelihood ratio in the Chinese and English databases, respectively. The strongest burst keyword was "exosome" (strength 3.57) and "endothelial progenitor cells" (strength 7.87) in the Chinese and English databases, respectively. These findings indicated a direction for future therapies and research on stem cells in the treatment of diabetic wounds.
Assuntos
Povo Asiático , Diabetes Mellitus , População do Leste Asiático , Humanos , Bibliometria , Diabetes Mellitus/terapia , Células-TroncoRESUMO
Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-forming α subunit of VGSC encoded by SCN5A. Various studies have demonstrated that Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review the latest available data on the pro-metastatic effect of Nav1.5 and its underlying mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for breast cancer treatment.
RESUMO
Spider venoms are known to contain proteins and polypeptides that perform various functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic, and hemagglutinic activities. Currently, several classes of natural molecules from spider venoms are potential sources of chemotherapeutics against tumor cells. Some of the spider peptide toxins produce lethal effects on tumor cells by regulating the cell cycle, activating caspase pathway or inactivating mitochondria. Some of them also target the various types of ion channels (including voltage-gated calcium channels, voltage-gated sodium channels, and acid-sensing ion channels) among other pain-related targets. Herein we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against the pathophysiological conditions including cancer and pain.
RESUMO
Spider venoms are known to contain proteins and polypeptides that perform various functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic, and hemagglutinic activities. Currently, several classes of natural molecules from spider venoms are potential sources of chemotherapeutics against tumor cells. Some of the spider peptide toxins produce lethal effects on tumor cells by regulating the cell cycle, activating caspase pathway or inactivating mitochondria. Some of them also target the various types of ion channels (including voltage-gated calcium channels, voltage-gated sodium channels, and acid-sensing ion channels) among other pain-related targets. Herein we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against the pathophysiological conditions including cancer and pain.(AU)