Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955624

RESUMO

The chromodomain helicase DNA binding domain 5 (CHD5) is required for neural development and plays an important role in the regulation of gene expression. Although CHD5 exerts a broad tumor suppressor effect in many tumor types, its specific functions regarding its expression levels, and impact on immune cell infiltration, proliferation and migration in glioma remain unclear. Here, we evaluated the role of CHD5 in tumor immunity in a pan-cancer multi-database using the R language. The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets were utilized to determine the role of CHD5 in 33 types of cancers, including the expression level, prognosis, tumor progression, and immune microenvironment. Furthermore, we explored the effect of CHD5 on glioma proliferation and migration using the cell counting kit 8 (CCK-8) assay, transwell assays and western blot analysis. The findings from our pan-cancer analysis showed that CHD5 was differentially expressed in the tumor tissues as compared to the normal tissues. Survival analysis showed that CHD5 was generally associated with the prognosis of glioblastoma (GBM), low Grade Glioma (LGG) and neuroblastoma, where the low expression of CHD5 was associated with a worse prognosis in glioma patients. Then, we confirmed that the expression level of CHD5 was associated with tumor immune infiltration and tumor microenvironment, especially in glioma. Moreover, si-RNA mediated knockdown of CHD5 promoted the proliferation and migration of glioma cells in vitro. In conclusion, CHD5 was found to be differentially expressed in the pan-cancer analysis and might play an important role in antitumor immunity. CHD5 is expected to be a potential tumor prognostic marker, especially in glioma.


Assuntos
Glioma , Proteínas do Tecido Nervoso , Biomarcadores Tumorais/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Genes Supressores de Tumor , Glioma/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Microambiente Tumoral/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430219

RESUMO

Neuroblastoma (NB) is an extracranial solid tumor in children with poor prognosis in high-risk patients and its pathogenesis and prognostic markers urgently need to be explored. This study aimed to explore potential biomarkers related to NB from the aspect of lipid metabolism. Fifty-eight lipid metabolism-related differentially expressed genes between high-risk NB and non-high-risk NB in the GSE49710 dataset were analyzed using bioinformatics, including 45 down-regulated genes and 13 up-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified steroid hormone biosynthesis as an abnormal metabolic pathway in high-risk NB. Survival analysis established a three-gene prognostic model, including ACHE, GDPD5 and PIK3R1. In the test data, the AUCs of the established prognostic models used to predict patient survival at 1, 3 and 5 years were 0.84, 0.90 and 0.91, respectively. Finally, in the SH-SY5Y cell line, it was verified that overexpression of GDPD5 can inhibit cell proliferation and migration, as well as affect the lipid metabolism of SH-SY5Y, but not the sugar metabolism. hsa-miR-592 was predicted to be a potential target miRNA of GDPD5 by bioinformatics. In conclusion, this study develops a lipid-metabolism-related gene-based prognostic model for NB and demonstrates that GDPD5 inhibits SH-SY5Y proliferation and migration and may be targeted by hsa-miR-592 and inhibit SH-SY5Y fat synthesis.


Assuntos
Neuroblastoma , Criança , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Metabolismo dos Lipídeos/genética , Prognóstico , Proliferação de Células/genética , Biologia Computacional/métodos
3.
Biochem Biophys Res Commun ; 559: 70-77, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33933992

RESUMO

CULLIN1 (CUL1) protein, as a scaffold protein in Skp1-CUL1-F box (SCF) E3 ligases complex, was reported involved in different cellular functions to regulate the early embryonic development. In our previous study, we have demonstrated that CUL1 promote trophoblast cell invasion at the maternal-fetal interface in human and the CUL1 protein significantly decreased in preeclampsia (PE) placenta, but how CUL1 involved in placentation is still obscure. Due to the embryo lethal in CUL1 knockout mice, the lentivirus mediated placenta-specific CUL1 knockdown mice model was constructed to uncover the potential role of CUL1 in placentation. In this study, CUL1 was first detected in mouse placenta. CUL1 mainly expressed in trophoblast giant cell at E9.5, and spongiotrophoblast at E11.5 and E13.5 by using immunohistochemistry and int situ hybridization. In lentivirus mediated placenta specific mouse model, the number of implanted embryos was reduced in CUL1 shRNA group at E13.5 and E18.5 compared to control group. Based on the morphological analysis of histologic staining, we observed that spongiotrophoblast layer is expanded, fetal angiogenesis in labyrinth was obstructed and fetus blood cells were accumulated in vessels. These results indicated that decreased expression of CUL1 affect placentation of mice, which give new insights into the cause of gestational diseases, but the exactly mechanism still needs further study.


Assuntos
Proteínas Culina/metabolismo , Placentação , Animais , Linhagem Celular , Proteínas Culina/análise , Proteínas Culina/genética , Implantação do Embrião , Feminino , Camundongos , Camundongos Knockout , Placenta/patologia , Placenta/fisiologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/patologia
4.
Front Oncol ; 12: 894485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324576

RESUMO

Background: Lung adenocarcinoma (LUAD) is the most common respiratory globallywith a poor prognosis. Lipid metabolism is extremely important for the occurrence and development of cancer. However, the role of genes involved in lipid metabolism in LUAD development is unclear. We aimed to identify the abnormal lipid metabolism pathway of LUAD, construct a novel prognostic model of LUAD, and discover novel biomarkers involved in lipid metabolism in LUAD. Methods: Based on differentially expressed genes involved in lipid metabolism in LUAD samples from The Cancer Genome Atlas (TCGA), abnormal lipid metabolism pathways in LUAD were analyzed. The lasso penalized regression analysis was performed on the TCGA cohort (training set) to construct a risk score formula. The predictive ability of the risk score was validated in the Gene Expression Omnibus (GEO) dataset (validation set) using Kaplan-Meier analysis and ROC curves. Finally, based on CRISPR gene editing technology, hematopoietic prostaglandin D synthase (HPGDS) was knocked out in A549 cell lines, the changes in lipid metabolism-related markers were detected by western blotting, and the changes in cell migration were detected by transwell assay. Results: Based on the differential genes between lung cancer tissue and normal tissue, we found that the arachidonic acid metabolism pathway is an abnormal lipid metabolism pathway in both lung adenocarcinoma and lung squamous cell carcinoma. Based on the sample information of TCGA and abnormally expressed lipid metabolism-related genes, a 9-gene prognostic risk score was successfully constructed and validated in the GEO dataset. Finally, we found that knockdown of HPGDS in A549 cell lines promoted lipid synthesis and is more invasive than in control cells. Rescue assays showed that ACSL1 knockdown reversed the pro-migration effects of HPGDS knockdown. The knockdown of HPGDS promoted migration response by upregulating the expression of the lipid metabolism key enzymes ACSL1 and ACC. Conclusion: The genes involved in lipid metabolism are associated with the occurrence and development of LUAD. HPGDS can be a therapeutic target of a potential lipid metabolism pathway in LUAD, and the therapeutic target of lipid metabolism genes in LUAD should be studied further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA