Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
2.
Biol Chem ; 403(5-6): 545-556, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34717050

RESUMO

Natural killer group 2 member D (NKG2D) plays an important role in the regulation of natural killer (NK) cell cytotoxicity in cancer immune surveillance. With the aim of redirecting NK cell cytotoxicity against tumors, the NKG2D ligand UL-16 binding protein 2 (ULBP2) was fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2). The resulting bispecific immunoligand ULBP2:HER2-scFv triggered NK cell-mediated killing of HER2-positive breast cancer cells in an antigen-dependent manner and required concomitant interaction with NKG2D and HER2 as revealed in antigen blocking experiments. The immunoligand induced tumor cell lysis dose-dependently and was effective at nanomolar concentrations. Of note, ULBP2:HER2-scFv sensitized tumor cells for antibody-dependent cell-mediated cytotoxicity (ADCC). In particular, the immunoligand enhanced ADCC by cetuximab, a therapeutic antibody targeting the epidermal growth factor receptor (EGFR) synergistically. No significant improvements were obtained by combining cetuximab and anti-HER2 antibody trastuzumab. In conclusion, dual-dual targeting by combining IgG1 antibodies with antibody constructs targeting another tumor associated antigen and engaging NKG2D as a second NK cell trigger molecule may be promising. Thus, the immunoligand ULBP2:HER2-scFv may represent an attractive biological molecule to promote NK cell cytotoxicity against tumors and to boost ADCC.


Assuntos
Neoplasias da Mama , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Feminino , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
3.
Transfus Med Hemother ; 44(5): 292-300, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29070974

RESUMO

BACKGROUND: Engineering of the antibody's fragment crystallizable (Fc) by modifying the amino acid sequence (Fc protein engineering) or the glycosylation pattern (Fc glyco-engineering) allows enhancing effector functions of tumor targeting antibodies. Here, we investigated whether complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of CD20 antibodies could be improved simultaneously by combining Fc protein engineering and glyco-engineering technologies. METHODS AND RESULTS: Four variants of the CD20 antibody rituximab were generated: a native IgG1, a variant carrying the EFTAE modification (S267E/H268F/S324T/G236A/I332E) for enhanced CDC as well as glyco-engineered, non-fucosylated derivatives of both to boost ADCC. The antibodies bound CD20 specifically with similar affinity. Antibodies with EFTAE modification were more efficacious in mediating CDC, irrespective of fucosylation, than antibodies with wild-type sequences due to enhanced C1q binding. In contrast, non-fucosylated variants had an enhanced affinity to FcγRIIIA and improved ADCC activity. Importantly, the double-engineered antibody lacking fucose and carrying the EFTAE modification mediated both CDC and ADCC with higher efficacy than the native CD20 IgG1 antibody. CONCLUSION: Combining glyco-engineering and protein engineering technologies offers the opportunity to simultaneously enhance ADCC and CDC activities of therapeutic antibodies. This approach may represent an attractive strategy to further improve antibody therapy of cancer and deserves further evaluation.

4.
Front Immunol ; 14: 1227572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965326

RESUMO

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.


Assuntos
Anticorpos Biespecíficos , Linfoma , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Antígenos CD19
5.
Front Immunol ; 13: 908093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784366

RESUMO

To identify new antibodies for the treatment of plasma cell disorders including multiple myeloma (MM), a single-chain Fragment variable (scFv) antibody library was generated by immunizing mice with patient-derived malignant plasma cells. To enrich antibodies binding myeloma antigens, phage display with cellular panning was performed. After depleting the immune library with leukocytes of healthy donors, selection of antibodies was done with L-363 plasma cell line in two consecutive panning rounds. Monitoring the antibodies' enrichment throughout the panning by next-generation sequencing (NGS) identified several promising candidates. Initially, 41 unique scFv antibodies evolving from different B cell clones were selected. Nine of these antibodies strongly binding to myeloma cells and weakly binding to peripheral blood mononuclear cells (PBMC) were characterized. Using stably transfected Chinese hamster ovary cells expressing individual myeloma-associated antigens revealed that two antibodies bind CD38 and intercellular adhesion molecule-1 (ICAM-1), respectively, and 7 antibodies target yet unknown antigens. To evaluate the therapeutic potential of our new antibodies, in a first proof-of-concept study the CD38 binding scFv phage antibody was converted into a chimeric IgG1. Further analyses revealed that #5-CD38-IgG1 shared an overlapping epitope with daratumumab and isatuximab and had potent anti-myeloma activity comparable to the two clinically approved CD38 antibodies. These results indicate that by phage display and deep sequencing, new antibodies with therapeutic potential for MM immunotherapy can be identified.


Assuntos
Bacteriófagos , Plasmócitos , Animais , Células CHO , Cricetinae , Cricetulus , Sequenciamento de Nucleotídeos em Larga Escala , Imunoglobulina G , Fatores Imunológicos , Imunoterapia , Leucócitos Mononucleares , Camundongos , Biblioteca de Peptídeos
6.
Sci Immunol ; 7(75): eabq2427, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35653438

RESUMO

Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.


Assuntos
COVID-19 , Proteínas do Envelope Viral , Vacina BNT162 , Epitopos , Humanos , Glicoproteínas de Membrana , Células B de Memória , Testes de Neutralização , SARS-CoV-2
7.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
8.
Signal Image Video Process ; 15(8): 1829-1836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721702

RESUMO

We address the problem of exposure correction of dark, blurry and noisy images captured in low-light conditions in the wild. Classical image-denoising filters work well in the frequency space but are constrained by several factors such as the correct choice of thresholds and frequency estimates. On the other hand, traditional deep networks are trained end to end in the RGB space by formulating this task as an image translation problem. However, that is done without any explicit constraints on the inherent noise of the dark images and thus produces noisy and blurry outputs. To this end, we propose a DCT/FFT-based multi-scale loss function, which when combined with traditional losses, trains a network to translate the important features for visually pleasing output. Our loss function is end to end differentiable, scale-agnostic and generic; i.e., it can be applied to both RAW and JPEG images in most existing frameworks without additional overhead. Using this loss function, we report significant improvements over the state of the art using quantitative metrics and subjective tests.

9.
Antibodies (Basel) ; 9(4)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212776

RESUMO

BACKGROUND: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody's Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. RESULTS: Four versions of a CD19 antibody based on tafasitamab's V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. CONCLUSIONS: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.

10.
Eur J Health Econ ; 20(1): 27-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29299763

RESUMO

Studies have found substantial differences in health-related behavior and health care usage between educational groups, which may explain part of the well-documented educational gradient in health. The allocative efficiency hypothesis offers a behavioral explanation for these reported differences. According to this theory, the educated possess more health knowledge and information, allowing them to make better health choices. We perform a mediation analysis to study this mechanism using original survey data from the Philippines, a lower-middle-income country. As an extension of previous empirical research, we construct a comprehensive index that captures different dimensions of health knowledge. Using generalized propensity scores, we find strong support for the allocative efficiency argument. Schooling is significantly associated with health knowledge levels, which explain up to 69% of the education effect on health lifestyle. This corresponds to twice the mediation strength of economic resources, suggesting an important role of this factor in explaining education effects on health decisions.


Assuntos
Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Estilo de Vida Saudável , Adulto , Países em Desenvolvimento/estatística & dados numéricos , Dieta Saudável/estatística & dados numéricos , Escolaridade , Exercício Físico , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Filipinas/epidemiologia , Pontuação de Propensão
11.
Infect Drug Resist ; 7: 199-201, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143748

RESUMO

Ticks are important vectors of disease and transmit an extensive array of bacterial, viral and protozoan diseases to both humans and dogs within a community. Borrelia burgdorferi, the causative agent of Lyme disease, has been extensively studied within both the human and veterinary population. Anaplasma phagocytophilum, an intracellular rickettsial pathogen also transmitted by ixodid ticks, has emerged as an important zoonotic infection with significant veterinary and medical implications, and is responsible for both canine granulocytic anaplasmosis and human granulocytic anaplasmosis. Multiple surveys exist in the international literature referencing infectivity rates of both of these diseases separately in both the dog and human populations. This is the first study to simultaneously examine the infectivity rate of both anaplasmosis and Lyme disease in humans and dogs in a community endemic for tick-borne diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA