Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 180(4): 603-604, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084338

RESUMO

In this issue of Cell, two papers report agonist-bound cryo-EM structures of the cannabinoid receptor, CB2, in complex with Gi. Importantly, beyond providing information that could help distinguish CB2 ligand binding from CB1, these structures support the existence of a nucleotide-free state during G-protein signaling.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP , Humanos , Transdução de Sinais
2.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
3.
J Chem Inf Model ; 61(12): 5742-5746, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34780173

RESUMO

The capsaicin receptor, transient receptor potential vanilloid type 1 (TRPV1), is a polymodal channel that has been implicated in the perception of pain and can be modulated by a variety of cannabinoid ligands. Here we report TRPV1 channel activation by the endocannabinoid, anandamide (AEA), in a unique, peripheral binding site via extended MD simulations. These results aim to expand the understanding of TRPV1 and assist in the development of new TRPV1 modulators.


Assuntos
Moduladores de Receptores de Canabinoides , Endocanabinoides , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Canais de Cátion TRPV
4.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046081

RESUMO

GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Canabinoides/metabolismo , Humanos , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075933

RESUMO

The orphan G-protein coupled receptor (GPCR), GPR18, has been recently proposed as a potential member of the cannabinoid family as it recognizes several endogenous, phytogenic, and synthetic cannabinoids. Potential therapeutic applications for GPR18 include intraocular pressure, metabolic disorders, and cancer. GPR18 has been reported to have high constitutive activity, i.e., activation/signaling occurs in the absence of an agonist. This activity can be reduced significantly by the A3.39N mutation. At the intracellular (IC) ends of (transmembrane helices) TMH3 and TMH6 in GPCRs, typically, a pair of oppositely charged amino acids form a salt bridge called the "ionic lock". Breaking of this salt bridge creates an IC opening for coupling with G protein. The GPR18 "ionic lock" residues (R3.50/S6.33) can form only a hydrogen bond. In this paper, we test the hypothesis that the high constitutive activity of GPR18 is due to the weakness of its "ionic lock" and that the A3.39N mutation strengthens this lock. To this end, we report molecular dynamics simulations of wild-type (WT) GPR18 and the A3.39N mutant in fully hydrated (POPC) phophatidylcholine lipid bilayers. Results suggest that in the A3.39N mutant, TMH6 rotates and brings R3.50 and S6.33 closer together, thus strengthening the GPR18 "ionic lock".


Assuntos
Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Íons , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Sódio/química
6.
J Neurosci ; 35(41): 13975-88, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468198

RESUMO

Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT: We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with typical high risk seeking, impulsivity, and augmented drug and nondrug reward sensitivity. Adolescence is a critical period for suboptimal behavioral choices and the emergence of neuropsychiatric disorders. Understanding the basis of these disorders therefore requires a comprehensive knowledge of how adolescent neurodevelopment triggers behavioral reactions. Our behavioral observations in adult mutant rats, together with reports on enhanced adolescent CB1R signaling, suggest a pivotal role for the CB1R in an adolescent brain as an important molecular mediator of adolescent behavior. These findings implicate the endocannabinoid system as a notable research target for adolescent-onset mental health disorders.


Assuntos
Comportamento do Adolescente/fisiologia , Comportamento Animal/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Adolescente , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Antagonistas de Receptores de Canabinoides/farmacologia , Cocaína/administração & dosagem , Corpo Estriado/citologia , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Modelos Animais , Mutação/genética , Cintilografia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Receptor CB1 de Canabinoide/genética , Assunção de Riscos , Comportamento Social , Isótopos de Enxofre/farmacocinética
7.
J Biol Chem ; 289(29): 20259-72, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24855641

RESUMO

In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4ß6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1ß1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the ß2-AR*·Gαsß1γ2 complex crystal structure, the Gαi1ß1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1ß1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Cromatografia Líquida , Reagentes de Ligações Cruzadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Receptor CB2 de Canabinoide/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
8.
Proteins ; 82(3): 452-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23999926

RESUMO

The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state (13)C- and (15)N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly (13)C- and (15)N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. (13)C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cß, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the (13) C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥ 1.5 ppm for carbons and ≥ 5.0 ppm for nitrogens). Simulated two-dimensional (13) Cα(i)-(13)C=O(i) and (13)C=O(i)-(15)NH(i + 1) dipolar-interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Isótopos de Carbono/química , Escherichia coli , Humanos , Lipossomos , Isótopos de Nitrogênio/química , Dobramento de Proteína , Receptor CB2 de Canabinoide/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260251

RESUMO

Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its well-defined degron Deg1. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel.

10.
Nat Commun ; 15(1): 2182, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467638

RESUMO

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel. Our study reveals how extended hydrophobic sequences at the termini of substrate proteins are recognized by Doa10 as a signal for quality control.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo
11.
ACS Infect Dis ; 10(4): 1162-1173, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38564659

RESUMO

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Assuntos
Capsídeo , Vírus da Hepatite B , Capsídeo/metabolismo , Proteínas do Capsídeo , Montagem de Vírus , Nucleocapsídeo
12.
Biochemistry ; 52(52): 9456-69, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24274581

RESUMO

GPR55 is a class A G protein-coupled receptor (GPCR) that has been implicated in inflammatory pain, neuropathic pain, metabolic disorder, bone development, and cancer. Initially deorphanized as a cannabinoid receptor, GPR55 has been shown to be activated by non-cannabinoid ligands such as l-α-lysophosphatidylinositol (LPI). While there is a growing body of evidence of physiological and pathophysiological roles for GPR55, the paucity of specific antagonists has limited its study. In collaboration with the Molecular Libraries Probe Production Centers Network initiative, we identified a series of GPR55 antagonists using a ß-arrestin, high-throughput, high-content screen of ~300000 compounds. This screen yielded novel, GPR55 antagonist chemotypes with IC50 values in the range of 0.16-2.72 µM [Heynen-Genel, S., et al. (2010) Screening for Selective Ligands for GPR55: Antagonists (ML191, ML192, ML193) (Bookshelf ID NBK66153; PMID entry 22091481)]. Importantly, many of the GPR55 antagonists were completely selective, with no agonism or antagonism against GPR35, CB1, or CB2 up to 20 µM. Using a model of the GPR55 inactive state, we studied the binding of an antagonist series that emerged from this screen. These studies suggest that GPR55 antagonists possess a head region that occupies a horizontal binding pocket extending into the extracellular loop region, a central ligand portion that fits vertically in the receptor binding pocket and terminates with a pendant aromatic or heterocyclic ring that juts out. Both the region that extends extracellularly and the pendant ring are features associated with antagonism. Taken together, our results provide a set of design rules for the development of second-generation GPR55 selective antagonists.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/metabolismo
13.
J Chem Theory Comput ; 19(11): 3025-3036, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192279

RESUMO

Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.


Assuntos
Simulação de Dinâmica Molecular , Estruturas Virais , Animais , Humanos
14.
Commun Biol ; 5(1): 1170, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329138

RESUMO

The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, binds to human ACE2, initiated by at least one protomer's receptor binding domain (RBD) switching from a "down" (closed) to an "up" (open) state. Here, we used large-scale molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations with more than a thousand windows and an aggregate total of 160 µs of simulation to investigate this transition with and without glycans. We find that the glycosylated spike has a higher barrier to opening and also energetically favors the down state over the up state. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state, while glycans at N165 and N343 can stabilize both the down and up states. Finally, we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the BD-368-2 antibody's epitope is continuously exposed, explaining its high efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A , Polissacarídeos , Epitopos
15.
J Med Chem ; 65(6): 4854-4864, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35290049

RESUMO

Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly. Specifically, the assembly intermediates with bound misdirecting CAMs appear to be flattened relative to those with bound accelerators. Finally, the potency of CAMs within the same class was studied. We find that an increased number of contacts with the capsid protein and favorable binding energies inferred from free energy perturbation calculations are indicative of increased potency.


Assuntos
Vírus da Hepatite B , Hepatite B , Antivirais/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/metabolismo , Humanos , Montagem de Vírus , Replicação Viral
16.
Biochemistry ; 50(25): 5633-47, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21534610

RESUMO

Marijuana is the most widely abused illegal drug, and its spectrum of effects suggests that several receptors are responsible for the activity. Two cannabinoid receptor subtypes, CB1 and CB2, have been identified, but the complex pharmacological properties of exogenous cannabinoids and endocannabinoids are not fully explained by their signaling. The orphan receptor GPR55 binds a subset of CB1 and CB2 ligands and has been proposed as a cannabinoid receptor. This designation, however, is controversial as a result of recent studies in which lysophosphatidylinositol (LPI) was identified as a GPR55 agonist. Defining a biological role for GPR55 requires GPR55 selective ligands that have been unavailable. From a ß-arrestin, high-throughput, high-content screen of 300000 compounds run in collaboration with the Molecular Libraries Probe Production Centers Network initiative (PubChem AID1965), we identified potent GPR55 selective agonists. By modeling of the GPR55 activated state, we compared the GPR55 binding conformations of three of the novel agonists obtained from the screen, CID1792197, CID1172084, and CID2440433 (PubChem Compound IDs), with that of LPI. Our modeling indicates the molecular shapes and electrostatic potential distributions of these agonists mimic those of LPI; the GPR55 binding site accommodates ligands that have inverted-L or T shapes with long, thin profiles that can fit vertically deep in the receptor binding pocket while their broad head regions occupy a horizontal binding pocket near the GPR55 extracellular loops. Our results will allow the optimization and design of second-generation GPR55 ligands and provide a means for distinguishing GPR55 selective ligands from those interacting with cannabinoid receptors.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Sequência de Aminoácidos , Arrestinas/química , Arrestinas/genética , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Modelos Químicos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/metabolismo , Eletricidade Estática , beta-Arrestinas
17.
J Biol Chem ; 285(23): 17954-64, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20220143

RESUMO

Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (-)-7'-isothiocyanato-11-hydroxy-1',1'dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207-1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane alpha-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event.


Assuntos
Lipídeos/química , Receptores Acoplados a Proteínas G/química , Animais , Ácidos Araquidônicos/química , Biofísica/métodos , Canabinoides/química , Bovinos , Simulação por Computador , Eicosanoides/química , Endocanabinoides , Glicerídeos/química , Ligação de Hidrogênio , Íons , Ligantes , Bicamadas Lipídicas/química , Ligação Proteica , Rodopsina/química , Solventes/química
18.
J Comput Chem ; 32(10): 2119-26, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21523790

RESUMO

The cannabinoid CB1 receptor is a class A G protein-coupled receptor (GPCR) that is the most widely expressed GPCR in the brain. Many GPCRs contain allosteric binding sites for endogenous and/or synthetic ligands, which are topographically distinct from the agonist-binding site that is known as the orthosteric site. While both endogenous and synthetic ligands that act at the CB1 orthosteric site have been known for some time, compounds that act at a CB1 allosteric site have only recently been discovered. The most studied of these is 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-ylphenyl)ethyl]amide (Org27569). Because allosteric ligands are thought to act through conformational changes in the receptor that are transmitted from the allosteric to the orthosteric site, computational studies of the structural and dynamic interactions of Org27569 with the CB1 receptor are crucial to achieve a molecular level understanding of the basis of action of this important new class of compounds. To date, such computational studies have not been possible due to the lack of a complete set of molecular mechanics force field parameters for Org27569. Here, we present the development of missing CHARMM force field parameters for Org27569 using previously published methods and the validation and application of these new parameters using normal mode analysis and molecular dynamics simulations combined with experimental infrared measurements.


Assuntos
Indóis/química , Piperidinas/química , Receptor CB1 de Canabinoide/química , Sítio Alostérico , Simulação de Dinâmica Molecular , Conformação Proteica , Teoria Quântica
19.
Chem Commun (Camb) ; 57(48): 5949-5952, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019602

RESUMO

We report a distinct difference in the interactions of the glycans of the host-cell receptor, ACE2, with SARS-CoV-2 and SARS-CoV S-protein receptor-binding domains (RBDs). Our analysis demonstrates that the ACE2 glycan at N322 enhances interactions with the SARS-CoV-2 RBD while the ACE2 glycan at N90 may offer protection against infections of both coronaviruses depending on its composition. The interactions of the ACE2 glycan at N322 with SARS-CoV RBD are blocked by the presence of the RBD glycan at N357 of the SARS-CoV RBD. The absence of this glycosylation site on SARS-CoV-2 RBD may enhance its binding with ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Polissacarídeos/metabolismo , SARS-CoV-2/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
20.
J Phys Chem Lett ; 12(23): 5494-5502, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34086459

RESUMO

SARS-CoV and SARS-CoV-2 bind to the human ACE2 receptor in practically identical conformations, although several residues of the receptor-binding domain (RBD) differ between them. Herein, we have used molecular dynamics (MD) simulations, machine learning (ML), and free-energy perturbation (FEP) calculations to elucidate the differences in binding by the two viruses. Although only subtle differences were observed from the initial MD simulations of the two RBD-ACE2 complexes, ML identified the individual residues with the most distinctive ACE2 interactions, many of which have been highlighted in previous experimental studies. FEP calculations quantified the corresponding differences in binding free energies to ACE2, and examination of MD trajectories provided structural explanations for these differences. Lastly, the energetics of emerging SARS-CoV-2 mutations were studied, showing that the affinity of the RBD for ACE2 is increased by N501Y and E484K mutations but is slightly decreased by K417N.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Aprendizado de Máquina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA