Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Am J Hum Genet ; 111(8): 1643-1655, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39089258

RESUMO

The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.


Assuntos
Metilação de DNA , Humanos , Feminino , Masculino , Anormalidades Múltiplas/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/diagnóstico
2.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37963460

RESUMO

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Spliceossomos/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Síndrome , Malformações do Sistema Nervoso/genética , Perda de Heterozigosidade , Fenótipo
4.
Proc Natl Acad Sci U S A ; 119(18): e2115960119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482924

RESUMO

Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy belonging to the ciliopathy disorders and known as the most common cause of hereditary end-stage renal disease in children. Yet, no curative treatment is available. The major gene, NPHP1, encodes a protein playing key functions at the primary cilium and cellular junctions. Using a medium-throughput drug-screen in NPHP1 knockdown cells, we identified 51 Food and Drug Administration-approved compounds by their ability to alleviate the cellular phenotypes associated with the loss of NPHP1; 11 compounds were further selected for their physicochemical properties. Among those compounds, prostaglandin E1 (PGE1) rescued ciliogenesis defects in immortalized patient NPHP1 urine-derived renal tubular cells, and improved ciliary and kidney phenotypes in our NPH zebrafish and Nphp1 knockout mouse models. Furthermore, Taprenepag, a nonprostanoid prostaglandin E2 receptor agonist, alleviated the severe retinopathy observed in Nphp1−/− mice. Finally, comparative transcriptomics allowed identification of key signaling pathways downstream PGE1, including cell cycle progression, extracellular matrix, adhesion, or actin cytoskeleton organization. In conclusion, using in vitro and in vivo models, we showed that prostaglandin E2 receptor agonists can ameliorate several of the pleotropic phenotypes caused by the absence of NPHP1; this opens their potential as a first therapeutic option for juvenile NPH-associated ciliopathies.


Assuntos
Ciliopatias , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo , Feminino , Humanos , Doenças Renais Císticas/congênito , Masculino , Camundongos , Doenças Renais Policísticas/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina E/metabolismo , Peixe-Zebra
5.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010604

RESUMO

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Assuntos
Doenças Ósseas/etiologia , Doenças Cardiovasculares/etiologia , Doenças do Tecido Conjuntivo/etiologia , Imunidade Celular/imunologia , Mutação com Perda de Função , Perda de Heterozigosidade , beta Carioferinas/genética , Adolescente , Adulto , Animais , Doenças Ósseas/patologia , Doenças Cardiovasculares/patologia , Criança , Doenças do Tecido Conjuntivo/patologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , Peixe-Zebra , beta Carioferinas/metabolismo
6.
Am J Hum Genet ; 108(2): 337-345, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434492

RESUMO

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/crescimento & desenvolvimento , Mutação , Ductos Mesonéfricos/crescimento & desenvolvimento , Adulto , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Códon sem Sentido , Feminino , Estudos de Associação Genética , Pleiotropia Genética , Proteínas Homeobox A10/genética , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição PAX8/genética , Herança Paterna , Penetrância , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , Ductos Mesonéfricos/anormalidades
7.
Genet Med ; 26(4): 101059, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
8.
Genet Med ; 26(1): 101007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37860968

RESUMO

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Metilação de DNA/genética , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Clin Genet ; 106(5): 564-573, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38940299

RESUMO

HDR syndrome is a rare disease characterized by hypoparathyroidism, deafness, and renal dysplasia. An autosomal dominant disease caused by heterozygous pathogenic GATA3 variants, the penetrance of each associated condition is variable. Literature reviews have provided some answers, but many questions remain, in particular what the relationship is between genotype and phenotype. The current study examines 28 patients with HDR syndrome combined with an exhaustive review of the literature. Some conditions such as hearing loss are almost always present, while others described as rare initially, do not seem to be so rare after all (genital malformations and basal ganglia calcifications). By modeling pathogenic GATA3 variants found in HDR syndrome, we found that missense variations appear to always be located in the same area (close to the two Zinc Finger domain). We describe new pathogenic GATA3 variants, of which some seem to always be associated with certain conditions. Many audiograms were studied to establish a typical audiometric profile associated with a phenotype in HDR. As mentioned in the literature, hearing function should always be assessed as early as possible and follow up of patients with HDR syndrome should include monitoring of parathyroid function and vesicoureteral reflux in order to prevent complications.


Assuntos
Fator de Transcrição GATA3 , Hipoparatireoidismo , Fenótipo , Humanos , Hipoparatireoidismo/genética , Hipoparatireoidismo/patologia , Fator de Transcrição GATA3/genética , Masculino , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Estudos de Associação Genética , Nefrose/genética , Nefrose/patologia , Criança , Predisposição Genética para Doença , Mutação , Pré-Escolar , Estudos de Coortes
10.
Nature ; 558(7711): 540-546, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899452

RESUMO

CLOVES syndrome (congenital lipomatous overgrowth, vascular malformations, epidermal naevi, scoliosis/skeletal and spinal syndrome) is a genetic disorder that results from somatic, mosaic gain-of-function mutations of the PIK3CA gene, and belongs to the spectrum of PIK3CA-related overgrowth syndromes (PROS). This rare condition has no specific treatment and a poor survival rate. Here, we describe a postnatal mouse model of PROS/CLOVES that partially recapitulates the human disease, and demonstrate the efficacy of BYL719, an inhibitor of PIK3CA, in preventing and improving organ dysfunction. On the basis of these results, we used BYL719 to treat nineteen patients with PROS. The drug improved the disease symptoms in all patients. Previously intractable vascular tumours became smaller, congestive heart failure was improved, hemihypertrophy was reduced, and scoliosis was attenuated. The treatment was not associated with any substantial side effects. In conclusion, this study provides the first direct evidence supporting PIK3CA inhibition as a promising therapeutic strategy in patients with PROS.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Lipoma/tratamento farmacológico , Lipoma/enzimologia , Terapia de Alvo Molecular , Anormalidades Musculoesqueléticas/tratamento farmacológico , Anormalidades Musculoesqueléticas/enzimologia , Nevo/tratamento farmacológico , Nevo/enzimologia , Tiazóis/uso terapêutico , Malformações Vasculares/tratamento farmacológico , Malformações Vasculares/enzimologia , Adulto , Animais , Criança , Modelos Animais de Doenças , Feminino , Células HeLa , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Masculino , Camundongos , Fenótipo , Escoliose/complicações , Escoliose/tratamento farmacológico , Sirolimo/uso terapêutico , Síndrome , Neoplasias Vasculares/complicações , Neoplasias Vasculares/tratamento farmacológico
11.
Prenat Diagn ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635411

RESUMO

OBJECTIVE: Here we trained an automatic phenotype assessment tool to recognize syndromic ears in two syndromes in fetuses-=CHARGE and Mandibulo-Facial Dysostosis Guion Almeida type (MFDGA)-versus controls. METHOD: We trained an automatic model on all profile pictures of children diagnosed with genetically confirmed MFDGA and CHARGE syndromes, and a cohort of control patients, collected from 1981 to 2023 in Necker Hospital (Paris) with a visible external ear. The model consisted in extracting landmarks from photographs of external ears, in applying geometric morphometry methods, and in a classification step using machine learning. The approach was then tested on photographs of two groups of fetuses: controls and fetuses with CHARGE and MFDGA syndromes. RESULTS: The training set contained a total of 1489 ear photographs from 526 children. The validation set contained a total of 51 ear photographs from 51 fetuses. The overall accuracy was 72.6% (58.3%-84.1%, p < 0.001), and 76.4%, 74.9%, and 86.2% respectively for CHARGE, control and MFDGA fetuses. The area under the curves were 86.8%, 87.5%, and 90.3% respectively for CHARGE, controls, and MFDGA fetuses. CONCLUSION: We report the first automatic fetal ear phenotyping model, with satisfactory classification performances. Further validations are required before using this approach as a diagnostic tool.

12.
PLoS Genet ; 17(8): e1009698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358225

RESUMO

Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.


Assuntos
Variações do Número de Cópias de DNA , Sistema Nervoso Entérico/crescimento & desenvolvimento , Redes Reguladoras de Genes , Doença de Hirschsprung/genética , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Sistema Nervoso Entérico/química , Epistasia Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Camundongos , Peixe-Zebra
13.
BMC Med Inform Decis Mak ; 24(1): 134, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789985

RESUMO

BACKGROUND: There are approximately 8,000 different rare diseases that affect roughly 400 million people worldwide. Many of them suffer from delayed diagnosis. Ciliopathies are rare monogenic disorders characterized by a significant phenotypic and genetic heterogeneity that raises an important challenge for clinical diagnosis. Diagnosis support systems (DSS) applied to electronic health record (EHR) data may help identify undiagnosed patients, which is of paramount importance to improve patients' care. Our objective was to evaluate three online-accessible rare disease DSSs using phenotypes derived from EHRs for the diagnosis of ciliopathies. METHODS: Two datasets of ciliopathy cases, either proven or suspected, and two datasets of controls were used to evaluate the DSSs. Patient phenotypes were automatically extracted from their EHRs and converted to Human Phenotype Ontology terms. We tested the ability of the DSSs to diagnose cases in contrast to controls based on Orphanet ontology. RESULTS: A total of 79 cases and 38 controls were selected. Performances of the DSSs on ciliopathy real world data (best DSS with area under the ROC curve = 0.72) were not as good as published performances on the test set used in the DSS development phase. None of these systems obtained results which could be described as "expert-level". Patients with multisystemic symptoms were generally easier to diagnose than patients with isolated symptoms. Diseases easily confused with ciliopathy generally affected multiple organs and had overlapping phenotypes. Four challenges need to be considered to improve the performances: to make the DSSs interoperable with EHR systems, to validate the performances in real-life settings, to deal with data quality, and to leverage methods and resources for rare and complex diseases. CONCLUSION: Our study provides insights into the complexities of diagnosing highly heterogenous rare diseases and offers lessons derived from evaluation existing DSSs in real-world settings. These insights are not only beneficial for ciliopathy diagnosis but also hold relevance for the enhancement of DSS for various complex rare disorders, by guiding the development of more clinically relevant rare disease DSSs, that could support early diagnosis and finally make more patients eligible for treatment.


Assuntos
Ciliopatias , Registros Eletrônicos de Saúde , Doenças Raras , Humanos , Ciliopatias/diagnóstico , Doenças Raras/diagnóstico , Sistemas de Apoio a Decisões Clínicas , Fenótipo
14.
Am J Hum Genet ; 106(6): 779-792, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413283

RESUMO

The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.


Assuntos
Alelos , Deficiências do Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Sequência de Bases , Criança , Pré-Escolar , Cílios/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Neoplasias/genética , Proteínas do Tecido Nervoso , Proteínas Nucleares , Linhagem , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
15.
Blood ; 137(26): 3660-3669, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763700

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Assuntos
Antígenos de Grupos Sanguíneos , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Convulsões , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Humanos , Células K562 , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/enzimologia , Convulsões/genética
16.
Am J Med Genet A ; 191(5): 1210-1221, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36714960

RESUMO

Two to three thousand syndromes modify facial features: their screening requires the eye of an expert in dysmorphology. A widely used tool in shape characterization is geometric morphometrics based on landmarks, which are precise and reproducible anatomical points. Landmark positioning is user dependent and time consuming. Many automatic landmarking tools are currently available but do not work for children, because they have mainly been trained using photographic databases of healthy adults. Here, we developed a method for building an automatic landmarking pipeline for frontal and lateral facial photographs as well as photographs of external ears. We evaluated the algorithm on patients diagnosed with Treacher Collins (TC) syndrome as it is the most frequent mandibulofacial dysostosis in humans and is clinically recognizable although highly variable in severity. We extracted photographs from the photographic database of the maxillofacial surgery and plastic surgery department of Hôpital Necker-Enfants Malades in Paris, France with the diagnosis of TC syndrome. The control group was built from children admitted for craniofacial trauma or skin lesions. After testing two methods of object detection by bounding boxes, a Haar Cascade-based tool and a Faster Region-based Convolutional Neural Network (Faster R-CNN)-based tool, we evaluated three different automatic annotation algorithms: the patch-based active appearance model (AAM), the holistic AAM, and the constrained local model (CLM). The final error corresponding to the distance between the points placed by automatic annotation and those placed by manual annotation was reported. We included, respectively, 1664, 2044, and 1375 manually annotated frontal, profile, and ear photographs. Object recognition was optimized with the Faster R-CNN-based detector. The best annotation model was the patch-based AAM (p < 0.001 for frontal faces, p = 0.082 for profile faces and p < 0.001 for ears). This automatic annotation model resulted in the same classification performance as manually annotated data. Pretraining on public photographs did not improve the performance of the model. We defined a pipeline to create automatic annotation models adapted to faces with congenital anomalies, an essential prerequisite for research in dysmorphology.


Assuntos
Disostose Mandibulofacial , Doenças Raras , Adulto , Humanos , Criança , Algoritmos , Imageamento Tridimensional/métodos , Pontos de Referência Anatômicos/anatomia & histologia
17.
Am J Med Genet A ; 191(1): 77-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271508

RESUMO

Developmental abnormalities provide a unique opportunity to seek for the molecular mechanisms underlying human organogenesis. Esophageal development remains incompletely understood and elucidating causes for esophageal atresia (EA) in humans would contribute to achieve a better comprehension. Prenatal detection, syndromic classification, molecular diagnosis, and prognostic factors in EA are challenging. Some syndromes have been described to frequently include EA, such as CHARGE, EFTUD2-mandibulofacial dysostosis, Feingold syndrome, trisomy 18, and Fanconi anemia. However, no molecular diagnosis is made in most cases, including frequent associations, such as Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL). This study evaluates the clinical and genetic test results of 139 neonates and 9 fetuses followed-up at the Necker-Enfants Malades Hospital over a 10-years period. Overall, 52 cases were isolated EA (35%), and 96 were associated with other anomalies (65%). The latter group is divided into three subgroups: EA with a known genomic cause (9/148, 6%); EA with Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL) or VACTERL/Oculo-Auriculo-Vertebral Dysplasia (VACTERL/OAV) (22/148, 14%); EA with associated malformations including congenital heart defects, duodenal atresia, and diaphragmatic hernia without known associations or syndromes yet described (65/148, 44%). Altogether, the molecular diagnostic rate remains very low and may underlie frequent non-Mendelian genetic models.


Assuntos
Atresia Esofágica , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Fístula Traqueoesofágica , Recém-Nascido , Gravidez , Feminino , Humanos , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Estudos Retrospectivos , Fístula Traqueoesofágica/genética , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/complicações , Traqueia/anormalidades , Coluna Vertebral/anormalidades , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Rim/anormalidades , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
18.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196855

RESUMO

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Assuntos
Anormalidades Múltiplas , Microcefalia , Humanos , Hibridização Genômica Comparativa , Anormalidades Múltiplas/genética , Microcefalia/genética , Síndrome , Estudos de Associação Genética
19.
J Neural Transm (Vienna) ; 130(3): 473-479, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719463

RESUMO

On June 2022, the 2nd Webinar "Neurodevelopmental Disorders (NDD) without boundaries took place at the Imagine Institute in Paris and was broadcasted live and in replay. The aim of this webinar is to address NDD in a dimensional rather than in a categorical approach. Several speakers were invited to present their researches on the subject. Classifications in NDD were discussed: irritability in NDD, involvement of the immune system in neurodevelopment, nutrition and gut microbiota modulate brain inflammation and neurodevelopment, co-occurring conditions in autistic adolescents and adults without intellectual disability. Classifications in psychiatric disorders were asked: mapping the effect of genes on cognition and autism risk, epigenetics and symptomatic trajectory in neurodevelopmental disorders, the autism-schizophrenia continuum in two examples: minor neurological signs and EEG microstates, the cerebellum in schizophrenia and autism: from imaging to intervention perspectives. Both genetic and environmental factors, along with clinical and imaging features, argue toward a continnum between NDD but also with adult psychiatric presentations. This new paradigm could modify the therapeutic strategy, with the development of large-spectrum treatments or new psychotherapies addressing co-occuring symptoms. The complexity and the heterogeneity of NDD apply well to the next scientific and political challenges: developing international convergence to push back the frontiers of our knowledge. This article is a summary of the 2nd webinar "Neurodevelopmental Disorders (NDD) without boundaries: research and interventions beyond classifications" sponsored by the French National Academy of Medicine, the autism and neurodevelopmental disorders scientific interest group (GIS), the International Research Network Dev-O-Psy and the French Institute of Psychiatry (GDR3557). Oral presentations are available as a replay on the following website (in French): https://autisme-neurodev.org/evenements/2022/04/12/tnd-sans-frontieres-la-recherche-et-les-interventions-au-dela-des-classifications/ .


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Adolescente , Humanos , Transtornos do Neurodesenvolvimento/terapia , Deficiência Intelectual/genética , Psicoterapia
20.
J Med Genet ; 59(6): 559-567, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820833

RESUMO

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Assuntos
Artrogripose , Artrogripose/diagnóstico , Artrogripose/genética , Artrogripose/patologia , Genômica , Humanos , Linhagem , Fenótipo , Proteínas/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA