Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; 15(49): e1904112, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639283

RESUMO

Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X-ray (two modes) and fluorescence imaging (three modes) techniques for time-resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X-ray) and/or (nano)particles (X-ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator-assisted aerosol inhalation. It is demonstrated that in vivo propagation-based phase-contrast X-ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue-cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel-designed NM for targeting and efficacy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Animais , Feminino , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
2.
Acc Chem Res ; 46(3): 714-22, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22980029

RESUMO

Researchers need to study the biokinetics of inhaled biopersistent nano- and micrometer-sized particles (NPs and µPs) to assess their toxicity and to develop an understanding of their potential risks. When particles are inhaled, they do not necessarily remain at their sites of deposition in the respiratory tract. Instead they can undergo numerous transport processes within the various tissues of the lungs, including clearance from the lungs. In this context, we would like to understand how the biokinetic studies performed in animals can be extrapolated to humans. Interestingly, the particle retention is much shorter in rodent lungs and declines much faster than it does in human, simian, and canine lungs. The predominant long-term clearance pathway for both NPs and µPs in humans and other animal species is macrophage-mediated particle transport from the peripheral lungs toward ciliated airways and the larynx. However, the transport rate is 10 times higher in rodents than in other species. In addition to particle clearance out of the lung, we also observe particle redistribution from the epithelium toward and within the interstitium and lymph nodes of the lung and particle translocation to blood circulation leading to subsequent accumulation in secondary organs. While µPs have limited access to interstitial spaces in the rodent lungs, NPs rapidly relocate in the epithelium and the underlying interstitium. By contrast, indirect evidence shows that both NPs and µPs are relocated into the epithelium and interstitial spaces of the human, simian, and canine lungs. Only NPs translocate into the circulatory system and subsequently accumulate in the secondary organs and tissues of the body. Translocated NP fractions are rather low, but they depend strongly on the physicochemical properties of the NP and their surface properties. Growing evidence indicates that the binding and conjugation of proteins to NPs play an essential role in translocation across cellular membranes and organ barriers. In summary, particle biokinetics result from a multitude of highly dynamic processes, which depend not only on physicochemical properties of the particles but also on a multitude of cellular and molecular responses and interactions. Given the rather small accumulation in secondary organs after acute inhalation exposures, it appears likely that adverse effects caused by NPs accumulated in secondary organs may only occur after chronic exposure over extended time periods. Therefore adverse health effects in secondary organs such as the cardiovascular system that are associated with chronic exposure of ambient urban air pollution are less likely to result from particle translocation. Instead, chronic particle inhalation could trigger or modulate the autonomous nervous system or the release of soluble mediators into circulation leading to adverse health effects.


Assuntos
Exposição por Inalação , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Humanos , Cinética , Camundongos , Modelos Biológicos , Tamanho da Partícula
3.
Part Fibre Toxicol ; 10: 19, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23680060

RESUMO

BACKGROUND: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells. METHODS: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. RESULTS: AuNP were mainly found as singlets or small agglomerates of ≤ 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2±4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0±5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3±32.2% AuNP were on the epithelium and 58.3±41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5±4.8% AuNP were luminal, 21.4±14.2% within epithelial cells and 63.0±18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5±5.0% AuNP were luminal, 2.2±1.6% within epithelial cells and 82.8±0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. CONCLUSIONS: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.


Assuntos
Portadores de Fármacos , Ouro/farmacocinética , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Nanopartículas Metálicas , Doença Pulmonar Obstrutiva Crônica/metabolismo , Administração por Inalação , Aerossóis , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Ouro/administração & dosagem , Pulmão/fisiopatologia , Pulmão/ultraestrutura , Macrófagos Alveolares/ultraestrutura , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Distribuição Tecidual
4.
Eur Radiol ; 22(10): 2110-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22610534

RESUMO

OBJECTIVE: To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. METHODS: In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. RESULTS: Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. CONCLUSION: The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. KEY POINTS : • Ventilation of the paranasal sinuses is poorly understood. • Dual-energy CT ventilation imaging has been explored using phantom simulation. • Xenon can be seen in the paranasal sinuses using pulsating xenon flow. • Dual-energy CT uses a lower radiation dose compared with dynamic ventilation CT.


Assuntos
Seios Paranasais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Estudos de Viabilidade , Modelos Anatômicos , Respiração , Xenônio
5.
Front Allergy ; 3: 829898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386654

RESUMO

Background: Chronic rhinosinusitis is a common disease with a significant impact on the quality of life. Topical drug delivery to the paranasal sinuses is not efficient to prevent sinus surgery or expensive biologic treatment in a lot of cases as the affected mucosa is not reached. More efficient approaches for topical drug delivery are, therefore, necessary. In the current study, dual-energy CT (DECT) imaging was used to examine sinus ventilation before and after sinus surgery using a pulsating xenon gas ventilator in a cadaver head. Methods: Xenon gas was administered to the nasal cavity of a cadaver head with a laminar flow of 7 L/min and with pulsating xenon-flow (45 Hz frequency, 25 mbar amplitude). Nasal cavity and paranasal sinuses were imaged by DECT. This procedure was repeated after functional endoscopic sinus surgery (FESS). Based on the enhancement levels in the different sinuses, regional xenon concentrations were calculated. Results: Xenon-related enhancement could not be detected in most of the sinuses during laminar gas flow. By superimposing laminar flow with pulsation, DECT imaging revealed a xenon wash-in and wash-out in the sinuses. After FESS, xenon enhancement was immediately seen in all sinuses and reached higher concentrations than before surgery. Conclusion: Xenon-enhanced DECT can be used to visualize and quantify sinus ventilation. Pulsating air-/gas flow was superior to laminar flow for the administration of xenon to the paranasal sinuses. FESS leads to successful ventilation of all paranasal sinuses.

6.
Mol Med ; 17(7-8): 762-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21327296

RESUMO

Small sputum macrophages represent highly active cells that increase in the airways of patients with inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It has been reported often that levels of cytokines, chemokines and pro-teases are increased in sputum supernatants of these patients. In COPD, the small sputum macrophages may contribute to these supernatant proteins and recruit additional cells via specific chemokine expression patterns. We therefore investigated the expression profile of chemokines in sputum macrophages obtained from COPD patients in comparison to cells from healthy donors and cells isolated after inhalation of lipopolysaccharide (LPS). We used the minimally invasive procedure of sputum induction and have purified macrophages with the RosetteSep technology. Using macrophage purification and flow cytometry we show that in COPD small sputum macrophages account for 85.9% ± 8.3% compared with 12.9% ± 7.1% of total macrophages in control donors. When looking at chemokine expression we found, for the small macrophages in COPD, increased transcript and protein levels for CCL2, CCL7, CCL13 and CCL22 with a more than 100-fold increase for CCL13 mRNA (P < 0.001). Looking at active smokers without COPD, there is a substantial increase of small macrophages to 60% ± 15% and, here, chemokine expression is increased as well. In a model of airway inflammation healthy volunteers inhaled 20 µg of lipopolysaccharide (LPS), which resulted in an increase of small sputum macrophages from 18% ± 19% to 64% ± 25%. The pattern of chemokine expression was, however, different with an upregulation for CCL2 and CCL7, while CCL13 was downregulated three-fold in the LPS-induced small macrophages. These data demonstrate that sputum macrophages in COPD show induction of a specific set of CCL chemokines, which is distinct from what can be induced by LPS.


Assuntos
Quimiocinas/genética , Macrófagos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Escarro/metabolismo , Transcriptoma , Administração por Inalação , Adulto , Idoso , Contagem de Células , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Am J Respir Crit Care Med ; 177(4): 426-32, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17932382

RESUMO

RATIONALE: Little is known about clearance of ultrafine carbon particles from the different regions of the human lung. These particles may accumulate and present a health hazard because of their high surface area. OBJECTIVES: Technetium Tc 99m ((99m)Tc)-radiolabeled 100-nm-diameter carbon particles were inhaled by healthy nonsmokers, asymptomatic smokers, and by patients with chronic obstructive pulmonary disease (COPD). METHODS: Using a bolus inhalation technique, particle deposition was targeted either to the airways or to the lung periphery, and retention, clearance, and translocation were measured using retained radiotracer imaging. MEASUREMENTS AND MAIN RESULTS: In vitro studies revealed that mean leaching of soluble (99m)Tc-radiotracer from the carbon particles was 4.1 (2.6 [SD]) % after 24 hours. Cumulative (99m)Tc activity in urine at 24 hours was 1.1 (1.3) % of activity deposited in the lungs. In the lung periphery, particle retention was not affected by smoking or pulmonary disease; retention was 96 (3) % after 24 hours. The small amount of clearance could be attributed to leaching of the (99m)Tc label, suggesting negligible particle clearance. In healthy nonsmokers, retention of particles targeted to the airways was 89 (6) and 75 (10) % after 1.5 and 24 hours, respectively. Radiolabel activity did not accumulate in the liver. CONCLUSIONS: Within the limits of detection of our experimental system, most inhaled ultrafine carbon particles are retained in the lung periphery and in the conducting airways without substantial systemic translocation or accumulation in the liver at 48 hours. Repeated exposure may result in significant pulmonary accumulation of ultrafine particles.


Assuntos
Aerossóis/farmacologia , Poluentes Atmosféricos/farmacocinética , Carbono/farmacocinética , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Administração por Inalação , Idoso , Poluentes Atmosféricos/análise , Transporte Biológico , Carbono/administração & dosagem , Carbono/urina , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Depuração Mucociliar , Tamanho da Partícula , Probabilidade , Compostos Radiofarmacêuticos , Valores de Referência , Testes de Função Respiratória , Mecânica Respiratória , Fumar/metabolismo , Distribuição Tecidual
8.
ACS Nano ; 13(2): 1029-1041, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30566327

RESUMO

Deciphering biodistribution, biokinetics, and biological effects of nanoparticles (NPs) in entire organs with cellular resolution remains largely elusive due to the lack of effective imaging tools. Here, light sheet fluorescence microscopy in combination with optical tissue clearing was validated for concomitant three-dimensional mapping of lung morphology and NP biodistribution with cellular resolution in nondissected ex vivo murine lungs. Tissue autofluorescence allowed for label-free, quantitative morphometry of the entire bronchial tree, acinar structure, and blood vessels. Co-registration of fluorescent NPs with lung morphology revealed significant differences in pulmonary NP distribution depending on the means of application (intratracheal instillation and ventilator-assisted aerosol inhalation under anesthetized conditions). Inhalation exhibited a more homogeneous NP distribution in conducting airways and acini indicated by a central-to-peripheral (C/P) NP deposition ratio of unity (0.98 ± 0.13) as compared to a 2-fold enhanced central deposition (C/P = 1.98 ± 0.37) for instillation. After inhalation most NPs were observed in the proximal part of the acini as predicted by computational fluid dynamics simulations. At cellular resolution patchy NP deposition was visualized in bronchioles and acini, but more pronounced for instillation. Excellent linearity of the fluorescence intensity-dose response curve allowed for accurate NP dosimetry and revealed ca. 5% of the inhaled aerosol was deposited in the lungs. This single-modality imaging technique allows for quantitative co-registration of tissue architecture and NP biodistribution, which could accelerate elucidation of NP biokinetics and bioactivity within intact tissues, facilitating both nanotoxicology studies and the development of nanomedicines.


Assuntos
Cobalto/química , Pulmão/química , Nanopartículas/química , Animais , Feminino , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica
9.
J Control Release ; 307: 282-291, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254554

RESUMO

The complexity of lung diseases makes pre-clinical in vivo respiratory research in mouse lungs of great importance for a better understanding of physiology and therapeutic effects. Synchrotron-based imaging has been successfully applied to lung research studies, however longitudinal studies can be difficult to perform due to limited facility access. Laboratory-based x-ray sources, such as inverse Compton x-ray sources, remove this access limitation and opens up new possibilities for pre-clinical small-animal lung research at high spatial and temporal resolution. The in vivo visualization of drug deposition in mouse lungs is of interest, particularly in longitudinal research, because the therapeutic outcome is not only dependent on the delivered dose of the drug, but also on the spatial distribution of the drug. An additional advantage of this approach, when compared to other imaging techniques, is that anatomic and dynamic information is collected simultaneously. Here we report the use of dynamic x-ray phase-contrast imaging to observe pulmonary drug delivery via liquid instillation, and by inhalation of micro-droplets. Different liquid volumes (4 µl, 20 µl, 50 µl) were tested and a range of localized and global distributions were observed with a temporal resolution of up to 1.5 fps. The in vivo imaging results were confirmed by ex vivo x-ray and fluorescence imaging. This ability to visualize pulmonary substance deposition in live small animals has provided a better understanding of the two key methods of delivery; instillation and nebulization.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Administração por Inalação , Aerossóis , Animais , Feminino , Camundongos Endogâmicos C57BL , Imagem Óptica , Tomografia Computadorizada por Raios X
10.
Rhinology ; 46(3): 213-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18853874

RESUMO

BACKGROUND: Although there is a high incidence of nasal disorders including chronic sinusitis, there is limited success in the topical drug delivery to the nose and the paranasal sinuses. This is caused by the nose being an efficient filter for inhaled aerosol particles and the paranasal sinuses being virtually non ventilated METHOD: The objective of this study was to visualize the efficiency of sinus ventilation in a nasal cast using dynamic 81mKr-gas imaging in combination with pulsating airflows. Furthermore, the efficiency of the deposition of radiolabelled aerosol was assessed. RESULTS: Pulsation increased ventilation efficiency of the sinuses more than fivefold and aerosol deposition efficiency more than twentyfold, compared to delivery without pulsation. Furthermore pulsation increased aerosol deposition in the nasal airways by a factor of three. Using pulsating airflow Kr-gas ventilation and aerosol deposition efficiencies increased with increasing sinus volume. Pulsating airflow resulted in a deposition of up to 8% of the nebulized drug within the sinuses compared to 0.2% without pulsation. CONCLUSIONS: The study demonstrates the high efficiency of a pulsating airflow in paranasal sinus ventilation and aerosolized drug delivery. This proves that topical drug delivery to the paranasal sinuses in relevant quantities is possible.


Assuntos
Aerossóis/administração & dosagem , Seios Paranasais/metabolismo , Administração Intranasal , Aerossóis/farmacocinética , Sistemas de Liberação de Medicamentos , Câmaras gama , Gases , Humanos , Criptônio , Seios Paranasais/diagnóstico por imagem , Ventilação Pulmonar/fisiologia , Fluxo Pulsátil , Cintilografia , Sinusite/tratamento farmacológico
11.
ACS Nano ; 12(8): 7771-7790, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30085651

RESUMO

The increasing use of gold nanoparticles leads to a possible increase of exposure by inhalation. Therefore, we have studied the deposition patterns of inhaled 20 nm gold nanoparticles (AuNP) in 7-90 day old rats and their biokinetics in 60 day old ones. Wistar-Kyoto rats inhaled intratracheally 20 nm 195Au-radiolabeled AuNP by negative pressure ventilation over 2 h. Immediately afterward lungs were excised, inflated and microwave dried. AuNP deposition was analyzed by single-photon emission computed tomography, computed-tomography and autoradiography. Completely balanced, quantitative biodistributions in major organs and all body tissues and total excretion were analyzed from 1 h to 28 d after inhalation. Intratracheal inhalation caused AuNP deposition predominately in the caudal lungs, independent of age. About 30% AuNP were deposited on airway epithelia and rapidly cleared by mucociliary clearance. About 80% of AuNP deposited in alveoli was relocated from the epithelium into the interstitium within 24 h and was inaccessible to broncho-alveolar lavage. During interstitial long-term retention, re-entrainment within macrophages back onto the lung epithelium and to the larynx and gastrointestinal tract (GIT) dominated AuNP clearance (rate 0.03 d-1) In contrast, AuNP-translocation across the air-blood barrier was much smaller leading to persistent retention in secondary organs and tissues in the ranking order liver > soft issue > spleen > kidneys > skeleton > blood > uterus > heart > brain. The age-independent, inhomogeneous AuNP deposition was probably caused by the negative pressure ventilation. Long-term AuNP clearance was dominated by macrophage-mediated transport from the interstitium to the larynx and GIT. Translocation across the rat air-blood barrier appeared to be similar to that of humans for similar sized AuNP.


Assuntos
Ouro/farmacocinética , Pulmão/metabolismo , Nanopartículas Metálicas/química , Administração por Inalação , Fatores Etários , Animais , Feminino , Ouro/administração & dosagem , Ouro/química , Cinética , Pulmão/química , Masculino , Nanopartículas Metálicas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Distribuição Tecidual
12.
Sci Rep ; 8(1): 6788, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717143

RESUMO

We describe the first dynamic and the first in vivo X-ray imaging studies successfully performed at a laser-undulator-based compact synchrotron light source. The X-ray properties of this source enable time-sequence propagation-based X-ray phase-contrast imaging. We focus here on non-invasive imaging for respiratory treatment development and physiological understanding. In small animals, we capture the regional delivery of respiratory treatment, and two measures of respiratory health that can reveal the effectiveness of a treatment; lung motion and mucociliary clearance. The results demonstrate the ability of this set-up to perform laboratory-based dynamic imaging, specifically in small animal models, and with the possibility of longitudinal studies.

13.
J Appl Physiol (1985) ; 122(1): 191-197, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856714

RESUMO

Recent studies show that nasal high flow (NHF) therapy can support ventilation in patients with acute or chronic respiratory disorders. Clearance of dead space has been suggested as being the key mechanism of respiratory support with NHF therapy. The hypothesis of this study was that NHF in a dose-dependent manner can clear dead space of the upper airways from expired air and decrease rebreathing. The randomized crossover study involved 10 volunteers using scintigraphy with 81mKrypton (81mKr) gas during a breath-holding maneuver with closed mouth and in 3 nasally breathing tracheotomized patients by volumetric capnography and oximetry through sampling CO2 and O2 in the trachea and measuring the inspired volume with inductance plethysmography following NHF rates of 15, 30, and 45 l/min. The scintigraphy revealed a decrease in 81mKr gas clearance half-time with an increase of NHF in the nasal cavities [Pearson's correlation coefficient cc = -0.55, P < 0.01], the pharynx (cc = -0.41, P < 0.01), and the trachea (cc = -0.51, P < 0.01). Clearance rates in nasal cavities derived from time constants and MRI-measured volumes were 40.6 ± 12.3 (SD), 52.5 ± 17.7, and 72.9 ± 21.3 ml/s during NHF (15, 30, and 45 l/min, respectively). Measurement of inspired gases in the trachea showed an NHF-dependent decrease of inspired CO2 that correlated with an increase of inspired O2 (cc = -0.77, P < 0.05). NHF clears the upper airways of expired air, which reduces dead space by a decrease of rebreathing making ventilation more efficient. The dead space clearance is flow and time dependent, and it may extend below the soft palate. NEW & NOTEWORTHY: Clearance of expired air in upper airways by nasal high flow (NHF) can be extended below the soft palate and de facto causes a reduction of dead space. Using scintigraphy, the authors found a relationship between NHF, time, and clearance. Direct measurement of CO2 and O2 in the trachea confirmed a reduction of rebreathing, providing the actual data on inspired gases, and this can be used for the assessment of other forms of respiratory support.


Assuntos
Cavidade Nasal/fisiologia , Nariz/fisiologia , Espaço Morto Respiratório/fisiologia , Dióxido de Carbono/metabolismo , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/metabolismo , Mucosa Nasal/metabolismo , Oxigênio/metabolismo , Ventilação Pulmonar/fisiologia , Respiração , Volume de Ventilação Pulmonar/fisiologia , Traqueia/metabolismo , Traqueia/fisiologia
14.
Respir Res ; 7: 10, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423294

RESUMO

Spherical monodisperse ferromagnetic iron oxide particles of 1.9 microm geometric and 4.2 microm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead space volume. In PCD patients deposition was 58+/-8 % after 8 s breath holding time. Particle retention was measured by the magnetopneumographic method over a period of nine months. Particle clearance from the airways showed a fast and a slow phase. In PCD patients airway clearance was retarded and prolonged, 42+/-12 % followed the fast phase with a mean half time of 16.8+/-8.6 hours. The remaining fraction was cleared slowly with a half time of 121+/-25 days. In healthy NS 49+/-9 % of particles were cleared in the fast phase with a mean half time of 3.0+/-1.6 hours, characteristic of an intact mucociliary clearance. There was no difference in the slow clearance phase between PCD patients and healthy NS. Despite non-functioning cilia the effectiveness of airway clearance in PCD patients is comparable to healthy NS, with a prolonged kinetics of one week, which may primarily reflect the effectiveness of cough clearance. This prolonged airway clearance allows longer residence times of bacteria and viruses in the airways and may be one reason for increased frequency of infections in PCD patients.


Assuntos
Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/fisiopatologia , Pneumopatias/diagnóstico , Pneumopatias/fisiopatologia , Depuração Mucociliar , Testes de Função Respiratória/métodos , Adulto , Compostos Férricos/farmacocinética , Volume Expiratório Forçado , Humanos , Magnetismo , Pessoa de Meia-Idade , Espaço Morto Respiratório
15.
Inhal Toxicol ; 18(10): 741-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16774863

RESUMO

Human pulmonary retention of 35 nm 99mTc-labeled carbonaceous particles, produced with a modified Technegas generator, was followed for 24 h using a gamma camera imaging technique. Nine healthy subjects and four asthmatics inhaled the test particles. Particle labeling stability was tested in vitro during 48 h. We also measured in vivo leaching in blood and in urine for 24 h. One additional subject was exposed to particles with unstable labeling. There were no significant differences between healthy and asthmatic subjects in any of the parameters studied. Particle retention after 24 h was 102% (SD +/- 4.7). Cumulative in vitro leaching of 99mTc activity from the particles was 1.7% (+/-1.1) after 24 h. In blood samples, 80 min after exposure, 1.1% (+/- 0.4) of initially deposited activity was detected and 91% of the activity was not bound to particles. In urine sampled during the first 24 h after exposure, 3.6% (+/- 0.9) of lung deposited activity was detected. Lung retention was 30% after 1 h in the subject exposed to the leaching aerosol (n = 1). Thirty-one percent of the deposited activity was detected in the blood after 80 min and 80% was not bound to particles. Fifty percent of the activity was excreted with urine within 24 h. On gamma camera images the activity visibly translocated from lungs to thyroid and gastrointestinal tract. In conclusion, over a 24-h period there was no significant translocation of inhaled 35-nm particles to the systemic circulation.


Assuntos
Asma/metabolismo , Carbono/farmacocinética , Exposição por Inalação , Pulmão/metabolismo , Aerossóis , Asma/diagnóstico por imagem , Transporte Biológico , Carbono/química , Feminino , Câmaras gama , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Traçadores Radioativos , Cintilografia , Tecnécio
16.
J Aerosol Med ; 19(1): 74-83, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16551218

RESUMO

Epidemiological studies continue to indicate associations between exposure to increased concentrations of ambient fine and ultrafine particles and adverse health effects in susceptible individuals. The ultrafine particle fraction in the ambient atmosphere seems to play a specific role. Yet, the dosimetry (including deposition patterns in the respiratory tract and, particularly, the biokinetic fate of ultrafine particles) is not fully understood. In contrast to fine particles, inhaled ultrafine particles seem to follow different routes in the organism. Cardiovascular effects observed in epidemiological studies triggered the discussion on enhanced translocation of ultrafine particles from the respiratory epithelium towards circulation and subsequent target organs, such as heart, liver, and brain, eventually causing adverse effects on cardiac function and blood coagulation, as well as on functions of the central nervous system. Current knowledge on systemic translocation of ultrafine particles in humans and animal models is reviewed. Additionally, an estimate of accumulating particle numbers in secondary target organs during chronic exposure is extrapolated from long-term translocation data obtained from rats. Toxicological studies aim to provide the biological plausibility of health effects of ultrafine particles and to identify cascades of mechanisms that are causal for the gradual transition from the physiological status towards pathophysiologcal alterations and eventually chronic disease. Considering the interaction between insoluble ultrafine particles and biological systems (such as body fluids, proteins, and cells), there still are gaps in the current knowledge on how ultrafine particles may cause adverse reactions. This paper reviews the current concept of interactions between insoluble ultrafine particles and biological systems.


Assuntos
Poluentes Atmosféricos/farmacocinética , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Tamanho da Partícula , Aerossóis , Animais , Brônquios/metabolismo , Humanos , Distribuição Tecidual , Traqueia/metabolismo
17.
Part Fibre Toxicol ; 2: 7, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16202162

RESUMO

BACKGROUND: Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. METHODS: In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 microg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. RESULTS: Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 microg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

18.
J Appl Physiol (1985) ; 118(12): 1525-32, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25882385

RESUMO

Recent studies showed that nasal high flow (NHF) with or without supplemental oxygen can assist ventilation of patients with chronic respiratory and sleep disorders. The hypothesis of this study was to test whether NHF can clear dead space in two different models of the upper nasal airways. The first was a simple tube model consisting of a nozzle to simulate the nasal valve area, connected to a cylindrical tube to simulate the nasal cavity. The second was a more complex anatomically representative upper airway model, constructed from segmented CT-scan images of a healthy volunteer. After filling the models with tracer gases, NHF was delivered at rates of 15, 30, and 45 l/min. The tracer gas clearance was determined using dynamic infrared CO2 spectroscopy and 81mKr-gas radioactive gamma camera imaging. There was a similar tracer-gas clearance characteristic in the tube model and the upper airway model: clearance half-times were below 1.0 s and decreased with increasing NHF rates. For both models, the anterior compartments demonstrated faster clearance levels (half-times < 0.5 s) and the posterior sections showed slower clearance (half-times < 1.0 s). Both imaging methods showed similar flow-dependent tracer-gas clearance in the models. For the anatomically based model, there was complete tracer-gas removal from the nasal cavities within 1.0 s. The level of clearance in the nasal cavities increased by 1.8 ml/s for every 1.0 l/min increase in the rate of NHF. The study has demonstrated the fast-occurring clearance of nasal cavities by NHF therapy, which is capable of reducing of dead space rebreathing.


Assuntos
Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Espaço Morto Respiratório/fisiologia , Fenômenos Fisiológicos Respiratórios , Dióxido de Carbono/metabolismo , Pressão Positiva Contínua nas Vias Aéreas , Meia-Vida , Humanos , Insuflação , Radioisótopos de Criptônio , Modelos Anatômicos , Cavidade Nasal/diagnóstico por imagem , Cintilografia , Tomografia Computadorizada por Raios X
19.
J Pharm Biomed Anal ; 102: 129-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25262414

RESUMO

Administration of drugs via inhalation is an attractive route for pulmonary and systemic drug delivery. The therapeutic outcome of inhalation therapy depends not only on the dose of the lung-delivered drug, but also on its bioactivity and regional distribution. Fluorescence imaging has the potential to monitor these aspects already during preclinical development of inhaled drugs, but quantitative methods of analysis are lacking. In this proof-of-concept study, we demonstrate that Cryoslicing Imaging allows for 3D quantitative fluorescence imaging on ex vivo murine lungs. Known amounts of fluorescent substance (nanoparticles or fluorophore-drug conjugate) were instilled in the lungs of mice. The excised lungs were measured by Cryoslicing Imaging. Herein, white light and fluorescence images are obtained from the face of a gradually sliced frozen organ block. A quantitative representation of the fluorescence intensity throughout the lung was inferred from the images by accounting for instrument noise, tissue autofluorescence and out-of-plane fluorescence. Importantly, the out-of-plane fluorescence correction is based on the experimentally determined effective light attenuation coefficient of frozen murine lung tissue (10.0 ± 0.6 cm(-1) at 716 nm). The linear correlation between pulmonary total fluorescence intensity and pulmonary fluorophore dose indicates the validity of this method and allows direct fluorophore dose assessment. The pulmonary dose of a fluorescence-labeled drug (FcγR-Alexa750) could be assessed with an estimated accuracy of 9% and the limit of detection in ng regime. Hence, Cryoslicing Imaging can be used for quantitative assessment of dose and 3D distribution of fluorescence-labeled drugs or drug carriers in the lungs of mice.


Assuntos
Pulmão/química , Succinimidas/análise , Administração por Inalação , Animais , Crioultramicrotomia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Nanopartículas/administração & dosagem , Receptores de IgG/administração & dosagem , Receptores de IgG/análise , Succinimidas/administração & dosagem
20.
J Appl Physiol (1985) ; 97(6): 2200-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15347631

RESUMO

Spherical monodisperse ferromagnetic iron oxide particles of 1.9-microm geometric and 4.2-microm aerodynamic diameter were inhaled by 13 healthy nonsmoking subjects using the shallow bolus technique. The bolus width was 100 ml, and the penetration front depth was 150 +/- 27 ml. The mean flow rate during inhalation and exhalation was 250 ml/s. The Fowler dead space and the phase 1 dead space of the airways were 282 +/- 49 and 164 +/- 34 ml, respectively. Deposition was below 20% without breath holding and 51 +/- 8% after an 8-s breath-holding time. We attempted to confine the bolus deposition to the bronchial airways by limiting the bolus front depth to the phase 1 dead space volume. Particle retention was measured by the magnetopneumographic method over a period of 9 mo. Particle clearance from the airways showed a fast and a slow phase; 49 +/- 9% followed the fast phase with a mean half-time of 3.0 +/- 1.6 h and characterized the mucociliary clearance. The remaining fraction was cleared slowly with a half-time of 109 +/- 78 days. The slow clearance phase was comparable to clearance measurements from the lung periphery of healthy nonsmokers, which allowed macrophage-dependent clearance mechanisms of the slow cleared fraction to be taken into account. Despite the fact that part of the slowly cleared particles may originate from peripheral deposition, the data demonstrate that mucociliary clearance does not remove all particles deposited in the airways and that a significant fraction undergoes long-term retention mechanisms, the origin of which is still under discussion.


Assuntos
Pulmão/fisiologia , Depuração Mucociliar/fisiologia , Mucosa Respiratória/fisiologia , Adulto , Humanos , Pessoa de Meia-Idade , Oxigênio/farmacocinética , Tamanho da Partícula , Espaço Morto Respiratório/fisiologia , Testes de Função Respiratória , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA