RESUMO
The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B'-family in the heart. Its role in regulating the cardiac response to ß-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B' subunits (ß and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show ß-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to ß-adrenergic stimulation in the myocardium.
Assuntos
Adrenérgicos , Proteína Fosfatase 2 , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Retículo Sarcoplasmático/metabolismoRESUMO
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. This study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the nonphosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the costimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by -2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.NEW & NOTEWORTHY The importance of the serine-41 phosphorylation site on B56α in reducing PP2A activity was demonstrated for the first time using a transgenic mutation model. Direct activation of PKC inhibits PP2A, leading to increased phosphorylation of MyBP-C in cardiomyocytes. The increased phosphorylation of contractile proteins is influenced by the PKC-phosphoB56α-PP2A signaling cascade resulting in improved intracellular Ca2+ handling and enhanced contractility and relaxation. PKC-mediated inhibition of PP2A also leads to modulation of the LTCC activation and inactivation kinetics.
Assuntos
Miócitos Cardíacos , Proteína Fosfatase 2 , Animais , Isoproterenol/farmacologia , Camundongos , Contração Muscular , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismoRESUMO
Adenylyl cyclases (AC) are essential for the normal and pathophysiological response of many cells. In cardiomyocytes, the predominant AC isoforms are AC5 and AC6. Specific AC5 inhibition was suggested as an option for the treatment of heart failure potentially advantageous over ß-blockers. We previously reported an interaction between the calcium-binding protein annexin A4 (ANXA4) and AC5 in human embryonic kidney 293 (HEK293) cells and an inhibition of cyclic adenosine monophosphate (cAMP) production in cardiomyocytes. Here, we investigated whether ANXA4 is able to differentiate between AC5 and AC6. In transfected HEK293 cells, ANXA4 specifically co-immunoprecipitated with AC5 and not with AC6, via its N-terminal domain. Both ANXA4 and a peptide comprising the ANXA4 N-terminal sequence (A4N1-22 ) decreased the cAMP production in AC5 and not in AC6 expressing cells. In line with ACs inhibition, in myocytes from ANXA4-deficient mice, ß-adrenoceptor (ßAR) stimulation led to a higher increase of the L-type calcium current (ICaL ) and to an excessive action potential duration (APD) prolongation as compared to wild-type cardiomyocytes. This enhanced response was reversed in the presence of A4N1-22 peptide likely via specific AC5 inhibition. We conclude that via the N-terminal domain ANXA4 inhibits AC5 not AC6, and that A4N1-22 as a specific AC5 inhibitor could serve as a novel therapeutic tool for the treatment of AC5-linked diseases.
Assuntos
Potenciais de Ação/fisiologia , Adenilil Ciclases/metabolismo , Anexina A4/metabolismo , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Células Musculares/metabolismoRESUMO
ICER (inducible cAMP early repressor) isoforms are transcriptional repressors encoded by the Crem (cAMP responsive element modulator) gene. They were linked to the regulation of a multitude of cellular processes and pathophysiological mechanisms. Here, we show for the first time that two independent induction patterns for CREM repressor isoforms exist in the heart, namely for ICER and smICER (small ICER), which are induced in response to ß-adrenergic stimulation in a transient- and saturation-like manner, respectively. This time-shifted induction pattern, driven by two internal promoters in the Crem gene, leads to the predominant transcription of smIcer after prolonged ß-adrenergic stimulation. Using an ICER knockout mouse model with preserved smICER induction, we show that the transient-like induction of Icer itself has minor effects on gene regulation, cardiac hypertrophy or contractile function in the heart. We conclude that the functions previously linked to ICER may be rather attributed to smICER, also beyond the cardiac background.
Assuntos
Agonistas Adrenérgicos beta/farmacologia , Modulador de Elemento de Resposta do AMP Cíclico/genética , Receptores Adrenérgicos beta/genética , Animais , Cardiomegalia/tratamento farmacológico , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genéticaRESUMO
Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.
Assuntos
Miocárdio/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Deleção de Genes , Genes Letais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
BACKGROUND: Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1ß release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF. METHODS: NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal AF or long-standing persistent (chronic) AF. To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knockin mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electric activation pattern, Ca2+ spark frequency, atrial effective refractory period, and morphology of atria were evaluated in CM-KI mice and wild-type littermates. RESULTS: NLRP3 inflammasome activity was increased in the atrial CMs of patients with paroxysmal AF and chronic AF. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3 inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic reticulum Ca2+ release, atrial effective refractory period shortening, and atrial hypertrophy. Adeno-associated virus subtype-9-mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. CONCLUSIONS: Our study establishes a novel pathophysiological role for CM NLRP3 inflammasome signaling, with a mechanistic link to the pathogenesis of AF, and establishes the inhibition of NLRP3 as a potential novel AF therapy approach.
Assuntos
Fibrilação Atrial/patologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Cães , Eletroencefalografia , Furanos/farmacologia , Furanos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Hipertrofia/etiologia , Hipertrofia/prevenção & controle , Indenos , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Técnicas de Patch-Clamp , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , SulfonasRESUMO
RATIONALE: A higher expression/activity of type 1 serine/threonine protein phosphatase 1 (PP1) may contribute to dephosphorylation of cardiac regulatory proteins triggering the development of heart failure. OBJECTIVE: Here, we tested the putatively protective effects of PP1 inhibitor-2 (I2) overexpression using a heart failure model induced by chronic ß-adrenergic stimulation. METHODS AND RESULTS: Transgenic (TG) and wild-type (WT) mice were subjected to isoprenaline (ISO) or isotonic NaCl solution supplied via osmotic minipumps for 7â¯days. I2 overexpression was associated with a depressed PP1 activity. Basal contractility was unchanged in catheterized mice and isolated cardiomyocytes between TGNaCl and WTNaCl. TGISO mice exhibited more fibrosis and a higher expression of hypertrophy marker proteins as compared to WTISO. After acute administration of ISO, the contractile response was accompanied by a higher sensitivity in TGISO as compared to WTISO. In contrast to basal contractility, the peak amplitude of [Ca]i and SR Ca load were reduced in TGNaCl as compared to WTNaCl. These effects were normalized to WT levels after chronic ISO stimulation. Cardiomyocyte relaxation and [Ca]i decay kinetics were hastened in TGISO as compared to WTISO, which can be explained by a higher phospholamban phosphorylation at Ser16. Chronic catecholamine stimulation was followed by an enhanced expression of GSK3ß, whereas the phosphorylation at Ser9 was lower in TG as compared to the corresponding WT group. This resulted in a higher I2 phosphorylation that may reactivate PP1. CONCLUSION: Our findings suggest that the basal desensitization of ß-adrenergic signaling and the depressed Ca handling in TG by inhibition of PP1 is restored by a GSK3ß-dependent phosphorylation of I2.
Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Fosfatase 1/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA , Insuficiência Cardíaca/metabolismo , Chaperonas de Histonas , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Sarcômeros/genética , Cloreto de Sódio/farmacologiaRESUMO
Annexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on ß-adrenoceptor (ß-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs. +AnxA4: 1956 ± 162 vs. 1304 ± 185 fmol/µg protein; n = 8). Disruption of the anxA4 gene led to a consistent increase in intracellular cAMP levels in isolated adult mouse cardiomyocytes, with heart-directed expression of the EPAC-FRET sensor, stimulated with FSK, and as determined by ELISA, also in mouse cardiomyocytes stimulated with the ß-AR agonist isoproterenol (ISO) (anxA4a(+/+) vs. anxA4a(-/-): 5.1 ± 0.3 vs. 6.7 ± 0.6 fmol/µg protein) or FSK (anxA4a(+/+) vs. anxA4a(-/-): 1891 ± 238 vs. 2796 ± 343 fmol/µg protein; n = 9-10). Coimmunoprecipitation experiments in HEK293 cells revealed a direct interaction of murine AnxA4 with human membrane-bound AC type 5 (AC5). As a functional consequence of AnxA4-mediated AC inhibition, AnxA4 inhibited the FSK-induced transcriptional activation mediated by the cAMP response element (CRE) in reporter gene studies (10-fold vs. control; n = 4 transfections) and reduced the FSK-induced phosphorylation of the CRE-binding protein (CREB) measured on Western blots (control vs. +AnxA4: 150 ± 17% vs. 105 ± 10%; n = 6) and by the use of the indicator of CREB activation caused by phosphorylation (ICAP)-FRET sensor, indicating CREB phosphorylation. Inactivation of AnxA4 in anxA4a(-/-) mice was associated with an increased cardiac response to ß-AR stimulation. Together, these results suggest that AnxA4 is a novel direct negative regulator of AC5, adding a new facet to the functions of annexins.
Assuntos
Adenilil Ciclases/metabolismo , Anexina A4/metabolismo , Membrana Celular/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Adenilil Ciclases/genética , Animais , Anexina A4/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Membrana Celular/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação/fisiologiaRESUMO
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases consisting of a catalytic C, a structural A, and a regulatory B subunit. The substrate and therefore the functional specificity of PP2A are determined by the assembly of the enzyme complex with the appropriate regulatory B subunit families, namely B55, B56, PR72, or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser(41) of B56α. This phosphoamino acid residue was efficiently phosphorylated in vitro by PKCα. We detected a 7-fold higher phosphorylation of B56α in failing human hearts compared with nonfailing hearts. Purified PP2A dimeric holoenzyme (subunits C and A) was able to dephosphorylate PKCα-phosphorylated B56α. The potency of B56α for PP2A inhibition was markedly increased by PKCα phosphorylation. PP2A activity was also reduced in HEK293 cells transfected with a B56α mutant, where serine 41 was replaced by aspartic acid, which mimics phosphorylation. More evidence for a functional role of PKCα-dependent phosphorylation of B56α was derived from Fluo-4 fluorescence measurements in phenylephrine-stimulated Flp293 cells. The endoplasmic reticulum Ca(2+) release was increased by 23% by expression of the pseudophosphorylated form compared with wild-type B56α. Taken together, our results suggest that PKCα can modify PP2A activity by phosphorylation of B56α at Ser(41). This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca(2+) homeostasis.
Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Proteína Quinase C-alfa/metabolismo , Proteína Fosfatase 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Substituição de Aminoácidos , Animais , Retículo Endoplasmático/genética , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Mutação de Sentido Incorreto , Fenilefrina/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Quinase C-alfa/genética , Proteína Fosfatase 2/genética , Serina/genética , Serina/metabolismo , Células Sf9 , SpodopteraRESUMO
Dephosphorylation of important myocardial proteins is regulated by protein phosphatase 2A (PP2A), representing a heterotrimer that is comprised of catalytic, scaffolding, and regulatory (B) subunits. There is a multitude of B subunit family members directing the PP2A holoenzyme to different myocellular compartments. To gain a better understanding of how these B subunits contribute to the regulation of cardiac performance, we generated transgenic (TG) mice with cardiomyocyte-directed overexpression of B56α, a phosphoprotein of the PP2A-B56 family. The 2-fold overexpression of B56α was associated with an enhanced PP2A activity that was localized mainly in the cytoplasm and myofilament fraction. Contractility was enhanced both at the whole heart level and in isolated cardiomyocytes of TG compared with WT mice. However, peak amplitude of [Ca]i did not differ between TG and WT cardiomyocytes. The basal phosphorylation of cardiac troponin inhibitor (cTnI) and the myosin-binding protein C was reduced by 26 and 35%, respectively, in TG compared with WT hearts. The stimulation of ß-adrenergic receptors by isoproterenol (ISO) resulted in an impaired contractile response of TG hearts. At a depolarizing potential of -5 mV, the ICa,L current density was decreased by 28% after administration of ISO in TG cardiomyocytes. In addition, the ISO-stimulated phosphorylation of phospholamban at Ser(16) was reduced by 27% in TG hearts. Thus, the increased PP2A-B56α activity in TG hearts is localized to specific subcellular sites leading to the dephosphorylation of important contractile proteins. This may result in higher myofilament Ca(2+) sensitivity and increased basal contractility in TG hearts. These effects were reversed by ß-adrenergic stimulation.
Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Proteína Fosfatase 2/metabolismo , Troponina I/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miofibrilas/genética , Miofibrilas/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteína Fosfatase 2/genética , Transdução de Sinais , Troponina I/genéticaRESUMO
BACKGROUND: The progression of atrial fibrillation (AF) from paroxysmal to persistent forms remains a major clinical challenge. Abnormal sarcoplasmic reticulum (SR) Ca(2+) leak via the ryanodine receptor type 2 (RyR2) has been observed as a source of ectopic activity in various AF models. However, its potential role in progression to long-lasting spontaneous AF (sAF) has never been tested. This study was designed to test the hypothesis that enhanced RyR2-mediated Ca(2+) release underlies the development of a substrate for sAF and to elucidate the underlying mechanisms. METHODS AND RESULTS: CREM-IbΔC-X transgenic (CREM) mice developed age-dependent progression from spontaneous atrial ectopy to paroxysmal and eventually long-lasting AF. The development of sAF in CREM mice was preceded by enhanced diastolic Ca(2+) release, atrial enlargement, and marked conduction abnormalities. Genetic inhibition of Ca(2+)/calmodulin-dependent protein kinase II-mediated RyR2-S2814 phosphorylation in CREM mice normalized open probability of RyR2 channels and SR Ca(2+) release, delayed the development of spontaneous atrial ectopy, fully prevented sAF, suppressed atrial dilation, and forestalled atrial conduction abnormalities. Hyperactive RyR2 channels directly stimulated the Ca(2+)-dependent hypertrophic pathway nuclear factor of activated T cell/Rcan1-4, suggesting a role for the nuclear factor of activated T cell/Rcan1-4 system in the development of a substrate for long-lasting AF in CREM mice. CONCLUSIONS: RyR2-mediated SR Ca(2+) leak directly underlies the development of a substrate for sAF in CREM mice, the first demonstration of a molecular mechanism underlying AF progression and sAF substrate development in an experimental model. Our work demonstrates that the role of abnormal diastolic Ca(2+) release in AF may not be restricted to the generation of atrial ectopy but extends to the development of atrial remodeling underlying the AF substrate.
Assuntos
Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores Etários , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismoRESUMO
The transcription factors cAMP-responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) regulate gene transcription in response to elevated cAMP levels. The Crem isoform inducible cAMP early repressor (Icer) is transcribed by the internal promoter P2 as a critical regulator of multiple cellular processes. Here, we describe a novel inducible Crem isoform, small Icer (smIcer), regulated by a newly identified promoter (P6). ChIP revealed binding of CREB to P6 in human and mouse myocardium. P6 activity was induced by constitutively active CREB or stimulation of adenylyl cyclase. In mice, smIcer mRNA was ubiquitously expressed and transiently induced by ß-adrenoceptor stimulation e.g., in heart and lung. SmICER repressed both basal and cAMP-induced activities of P6 and P2 promoters. Stimulation of adenylyl cyclase induced P2 and P6 in cell type-specific manner. Alternative translational start sites resulted in three different smICER proteins, linked to increased apoptosis sensitivity. In conclusion, the Crem gene provides two distinct and mutually controlled mechanisms of a cAMP-dependent induction of transcriptional repressors. Our results suggest not only that smICER is a novel regulator of cAMP-mediated gene regulation, but also emphasize that biological effects that have been ascribed solely to ICER, should be revised with regard to smICER.
Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Apoptose , Linhagem Celular , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Células HT29 , Humanos , Immunoblotting , Técnicas In Vitro , Miocárdio/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
OBJECTIVE: There is increasing evidence that serotonin (5-hydroxytryptamine [5-HT]) and distinct 5-HT receptors are involved in the pathogenesis of systemic sclerosis. The aim of this study was to test the hypothesis that tropisetron, a routinely used antiemetic agent previously characterized as a 5-HT(3/4) receptor-modulating agent, can directly affect collagen synthesis in vitro and attenuate experimentally induced fibrosis in vivo. METHODS: Functional in vitro studies were performed using human dermal fibroblasts (HDFs). Signal transduction studies included immunofluorescence analysis, Western immunoblotting, promoter reporter assays, cAMP/Ca(2+) measurements, and use of pharmacologic activators and inhibitors. Gene silencing was performed using small interfering RNA. Putative receptors of tropisetron were detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. The murine model of bleomycin-induced scleroderma was used to assess the antifibrogenic and antifibrotic effects of tropisetron in vivo. Collagen expression in vitro, ex vivo, and in situ was determined by real-time RT-PCR analysis, Western immunoblotting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunohistochemical analysis. RESULTS: Tropisetron suppressed collagen synthesis induced by transforming growth factor ß1 (TGFß1). This effect was independent of 5-HT(3/4) receptor but was mediated via α7 nicotinic acetylcholine receptor (α7nAChR). Suppression of TGFß1-induced collagen synthesis occurred via an unknown molecular mechanism not involving modulation of the Smad, cAMP, Akt, c-Jun, or MAPK pathway. In vivo, tropisetron not only prevented skin fibrosis but also reduced the collagen content in established dermal fibrosis induced by bleomycin. CONCLUSION: Tropisetron directly reduces collagen synthesis in HDFs via an α7nAChR-dependent mechanism. The antifibrogenic and antifibrotic effects of this agent observed in a mouse model of bleomycin- induced scleroderma indicate the future potential of tropisetron in the treatment of fibrotic diseases such as scleroderma.
Assuntos
Colágeno/biossíntese , Indóis/farmacologia , Receptores Nicotínicos/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Células 3T3 , Adulto , Idoso , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Derme/efeitos dos fármacos , Derme/metabolismo , Derme/patologia , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Humanos , Camundongos , Pessoa de Meia-Idade , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Tropizetrona , Receptor Nicotínico de Acetilcolina alfa7RESUMO
Background: The activity, localization, and substrate specificity of the protein phosphatase 2A (PP2A) heterotrimer are controlled by various regulatory B subunits. PR72 belongs to the B'' gene family and has been shown to be upregulated in human heart failure. However, little is known about the functions of PR72 in the myocardium. Methods: To address this issue, we generated a transgenic mouse model with heart-specific overexpression of PP2A-PR72. Biochemical and physiological methods were used to determine contractility, Ca2+ cycling parameters, and protein phosphorylation. Results: A 2.5-fold increase in PR72 expression resulted in moderate cardiac hypertrophy. Maximal ventricular pressure was increased in catheterized transgenic mice (TG) compared to wild-type (WT) littermates. This was accompanied by an increased shortening of sarcomere length and faster relaxation at the single-cell level in TG. In parallel with these findings, the peak amplitude of Ca2+ transients was increased, and the decay in intracellular Ca2+ levels was shortened in TG compared to WT. The changes in Ca2+ cycling in TG were also evident from an increase in the full duration and width at half maximum of Ca2+ sparks. Consistent with the contractile data, phosphorylation of phospholamban at threonine-17 was higher in TG hearts. The lower expression of the Na+/Ca2+ exchanger may also contribute to the hypercontractile state in transgenic myocardium. Conclusion: Our results suggest that PP2A-PR72 plays an important role in regulating cardiac contractile function and Ca2+ cycling, indicating that the upregulation of PR72 in heart failure is an attempt to compensate functionally.
RESUMO
Aims: Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results: Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions: Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.
RESUMO
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiopatias , Animais , Criança , Humanos , Camundongos , Arritmias Cardíacas , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Pirazóis/farmacologiaRESUMO
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to ß-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.
Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Proteínas de Transporte/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Calsequestrina/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.
Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Coração/fisiologia , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/genética , Western Blotting , Modelos Animais de Doenças , Eletrocardiografia , Proteínas de Homeodomínio/genética , Camundongos , Técnicas de Cultura de ÓrgãosRESUMO
Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34(+) cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.