Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 194(2): 195-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981221

RESUMO

miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.


Assuntos
Laminina , MicroRNAs , Humanos , Animais , Camundongos , Laminina/genética , Células Endoteliais , Transdução de Sinais/fisiologia , MicroRNAs/genética , Pele , Camundongos Knockout
2.
Nat Commun ; 12(1): 925, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568674

RESUMO

Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.


Assuntos
Células Endoteliais/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Semaforinas/metabolismo , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , RNA Longo não Codificante , Semaforinas/genética
3.
Clin Cancer Res ; 25(22): 6852-6867, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375515

RESUMO

PURPOSE: Treatment of BRAFV600E -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi. EXPERIMENTAL DESIGN: By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi. We further investigated the effects of MAPKi on fatty acid metabolism using in vitro and in vivo models and analyzing patients' pre- and on-treatment tumor specimens. RESULTS: Melanoma cells treated with MAPKi displayed increased levels of CD36 and of PPARα-mediated and carnitine palmitoyltransferase 1A (CPT1A)-dependent fatty acid oxidation (FAO). While CD36 is a useful marker of melanoma cells during adaptation and drug-tolerant phases, the upregulation of CD36 is not functionally involved in FAO changes that characterize MAPKi-treated cells. Increased FAO is required for BRAFV600E -mutant melanoma cells to survive under the MAPKi-induced metabolic stress prior to acquiring drug resistance. The upfront and concomitant inhibition of FAO, glycolysis, and MAPK synergistically inhibits tumor cell growth in vitro and in vivo. CONCLUSIONS: Thus, we identified a clinically relevant therapeutic approach that has the potential to improve initial responses and to delay acquired drug resistance of BRAFV600E -mutant melanoma.


Assuntos
Adaptação Biológica , Ácidos Graxos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mutação , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Animais , Biomarcadores , Antígenos CD36/genética , Antígenos CD36/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genótipo , Glicólise , Humanos , Imunofenotipagem , Melanoma/patologia , Camundongos , Modelos Biológicos , Estadiamento de Neoplasias , PPAR alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA