Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645198

RESUMO

The Gene Expression Omnibus (GEO) is a major open biomedical research repository for transcriptomics and other omics datasets. It currently contains millions of gene expression samples from tens of thousands of studies collected by many biomedical research laboratories from around the world. While users of the GEO repository can search the metadata describing studies for locating relevant datasets, there are currently no methods or resources that facilitate global search of GEO at the data level. To address this shortcoming, we developed RummaGEO, a webserver application that enables gene expression signature search of a large collection of human and mouse RNA-seq studies deposited into GEO. To develop the search engine, we performed offline automatic identification of sample conditions from the uniformly aligned GEO studies available from ARCHS4. We then computed differential expression signatures to extract gene sets from these studies. In total, RummaGEO currently contains 135,264 human and 158,062 mouse gene sets extracted from 23,395 GEO studies. Next, we analyzed the contents of the RummaGEO database to identify statistical patterns and perform various global analyses. The contents of the RummaGEO database are provided as a web-server search engine with signature search, PubMed search, and metadata search functionalities. Overall, RummaGEO provides an unprecedented resource for the biomedical research community enabling hypothesis generation for many future studies. The RummaGEO search engine is available from: https://rummageo.com/.

2.
Adv Sci (Weinh) ; 11(17): e2307263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441406

RESUMO

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.


Assuntos
Apoptose , Biomarcadores Tumorais , Ferroptose , Ferroptose/genética , Humanos , Animais , Camundongos , Apoptose/genética , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Biomarcadores/metabolismo
3.
Commun Biol ; 7(1): 482, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643247

RESUMO

Many biomedical research publications contain gene sets in their supporting tables, and these sets are currently not available for search and reuse. By crawling PubMed Central, the Rummagene server provides access to hundreds of thousands of such mammalian gene sets. So far, we scanned 5,448,589 articles to find 121,237 articles that contain 642,389 gene sets. These sets are served for enrichment analysis, free text, and table title search. Investigating statistical patterns within the Rummagene database, we demonstrate that Rummagene can be used for transcription factor and kinase enrichment analyses, and for gene function predictions. By combining gene set similarity with abstract similarity, Rummagene can find surprising relationships between biological processes, concepts, and named entities. Overall, Rummagene brings to surface the ability to search a massive collection of published biomedical datasets that are currently buried and inaccessible. The Rummagene web application is available at https://rummagene.com .


Assuntos
Pesquisa Biomédica , Mineração de Dados , Animais , Software , Bases de Dados Factuais , Regulação da Expressão Gênica , Mamíferos
4.
Cell Rep Methods ; 4(8): 100839, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39127042

RESUMO

The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.


Assuntos
Neoplasias , Fosfoproteínas , Proteômica , Transcriptoma , Humanos , Proteômica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Software , Biologia Computacional/métodos
5.
Bioinform Adv ; 3(1): vbad178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107655

RESUMO

Motivation: There is a rapid growth in the production of omics datasets collected by the diabetes research community. However, such published data are underutilized for knowledge discovery. To make bioinformatics tools and published omics datasets from the diabetes field more accessible to biomedical researchers, we developed the Diabetes Data and Hypothesis Hub (D2H2). Results: D2H2 contains hundreds of high-quality curated transcriptomics datasets relevant to diabetes, accessible via a user-friendly web-based portal. The collected and processed datasets are curated from the Gene Expression Omnibus (GEO). Each curated study has a dedicated page that provides data visualization, differential gene expression analysis, and single-gene queries. To enable the investigation of these curated datasets and to provide easy access to bioinformatics tools that serve gene and gene set-related knowledge, we developed the D2H2 chatbot. Utilizing GPT, we prompt users to enter free text about their data analysis needs. Parsing the user prompt, together with specifying information about all D2H2 available tools and workflows, we answer user queries by invoking the most relevant tools via the tools' API. D2H2 also has a hypotheses generation module where gene sets are randomly selected from the bulk RNA-seq precomputed signatures. We then find highly overlapping gene sets extracted from publications listed in PubMed Central with abstract dissimilarity. With the help of GPT, we speculate about a possible explanation of the high overlap between the gene sets. Overall, D2H2 is a platform that provides a suite of bioinformatics tools and curated transcriptomics datasets for hypothesis generation. Availability and implementation: D2H2 is available at: https://d2h2.maayanlab.cloud/ and the source code is available from GitHub at https://github.com/MaayanLab/D2H2-site under the CC BY-NC 4.0 license.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA