Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
BMC Genomics ; 25(1): 781, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134931

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) is the most widely planted legume forage and one of the most economically valuable crops in the world. Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays crucial roles in plant growth, development, and stress responses. To date, there has been no comprehensive bioinformatics investigation conducted on the SHMT genes in M. sativa. RESULTS: Here, we systematically analyzed the phylogenetic relationship, expansion pattern, gene structure, cis-acting elements, and expression profile of the MsSHMT family genes. The result showed that a total of 15 SHMT members were identified from the M. sativa genome database. Phylogenetic analysis demonstrated that the MsSHMTs can be divided into 4 subgroups and conserved with other plant homologues. Gene structure analysis found that the exons of MsSHMTs ranges from 3 to 15. Analysis of cis-acting elements found that each of the MsSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Expression and function analysis revealed that MsSHMTs expressed in all plant tissues. qRT-PCR analysis showed that MsSHMTs induced by ABA, Salt, and drought stresses. CONCLUSIONS: These results provided definite evidence that MsSHMTs might involve in growth, development and adversity responses in M. sativa, which laid a foundation for future functional studies of MsSHMTs.


Assuntos
Regulação da Expressão Gênica de Plantas , Glicina Hidroximetiltransferase , Medicago sativa , Família Multigênica , Filogenia , Estresse Fisiológico , Medicago sativa/genética , Estresse Fisiológico/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Secas , Regiões Promotoras Genéticas
2.
BMC Plant Biol ; 24(1): 691, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030468

RESUMO

BACKGROUND: Kentucky bluegrass (Poa pratensis L.) panicle development is a coordinated process of cell proliferation and differentiation with distinctive phases and architectural changes that are pivotal to determine seed yield. Cytokinin (CK) is a key factor in determining seed yield that might underpin the second "Green Revolution". However, whether there is a difference between endogenous CK content and seed yields of Kentucky bluegrass, and how CK-related genes are expressed to affect enzyme regulation and downstream seed yield in Kentucky bluegrass remains enigmatic. RESULTS: In order to establish a potential link between CK regulation and seed yield, we dissected and characterized the Kentucky bluegrass young panicle, and determined the changes in nutrients, 6 types of endogenous CKs, and 16 genes involved in biosynthesis, activation, inactivation, re-activation and degradation of CKs during young panicle differentiation of Kentucky bluegrass. We found that high seed yield material had more meristems compared to low seed yield material. Additionally, it was found that seed-setting rate (SSR) and lipase activity at the stage of spikelet and floret primordium differentiation (S3), as well as 1000-grain weight (TGW) and zeatin-riboside (ZR) content at the stages of first bract primordium differentiation (S1) and branch primordium differentiation (S2) showed a significantly positive correlation in the two materials. And zeatin, ZR, dihydrozeatin riboside, isopentenyl adenosine and isopentenyl adenosine riboside contents were higher in seed high yield material than those in seed low yield material at S3 stage. Furthermore, the expressions of PpITP3, PpITP5, PpITP8 and PpLOG1 were positively correlated with seed yield, while the expressions of PpCKX2, PpCKX5 and PpCKX7 were negatively correlated with seed yield in Kentucky bluegrass. CONCLUSIONS: Overall, our study established a relationship between CK and seed yield in Kentucky bluegrass. Perhaps we can increase SSR and TGW by increasing lipase activity and ZR content. Of course, using modern gene editing techniques to manipulate CK related genes such as PpITP3/5/8, PpLOG1 and PpCKX2/5/7, will be a more direct and effective method in Kentucky bluegrass, which requires further trial validation.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Poa , Sementes , Citocininas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Poa/genética , Poa/crescimento & desenvolvimento , Poa/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Genes de Plantas
3.
BMC Plant Biol ; 24(1): 954, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394556

RESUMO

BACKGROUND: Drought stress is a major limiting factor that affects forage yields, and understanding the drought resistance mechanism of plants is crucial for improving crop yields in arid areas. Alfalfa (Medicago sativa L.) is the most important legume plant, mainly planted in arid and semi-arid areas. However, the adaptability of alfalfa to drought stress and its physiological and molecular mechanisms of drought resistance remains unclear. RESULTS: In this study, we analyzed the physiological and transcriptome responses of alfalfa cultivars with different drought resistances (drought-sensitive Gannong No. 3 (G3), drought-resistant Gannong No. 8 (G8), and strong drought-resistant Longdong (LD)) under drought stress at 0, 6, 12, and 24 h. LD had higher catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities and a higher soluble protein content, lower malondialdehyde (MDA) content, a lower O2·- production rate, and a lower H2O2 content than G8 and G3 (P < 0.05). The functional enrichment analysis, temporal expression pattern analysis, and weighted gene co-expression network analysis (WGCNA) of the differentially expressed genes (DEGs) showed phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, glycolysis/gluconeogenesis, glutathione metabolism, and biosynthesis of amino acid responses to drought stress in alfalfa. The differential expression of genes during phenylpropanoid biosynthesis, starch and sucrose metabolism, and the glutathione metabolism pathway was further studied, and it was speculated that PAL, COMT, 4CL, CCR, CAD, HXK, INV, SUS, WAXY, AGP, GST, and APX1 played important roles in the alfalfa drought stress response. CONCLUSIONS: The aim of this study was to enhance alfalfa drought resistance by overexpressing positively regulated genes and knocking out negatively regulated genes, providing genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.


Assuntos
Secas , Medicago sativa , Transcriptoma , Medicago sativa/genética , Medicago sativa/fisiologia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Seca
4.
BMC Plant Biol ; 24(1): 27, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172667

RESUMO

BACKGROUND: Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS: Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS: Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secas , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Água/metabolismo
5.
BMC Plant Biol ; 24(1): 817, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210248

RESUMO

BACKGROUND: Astragalus cicer L. is a perennial rhizomatous legume forage known for its quality, high biomass yield, and strong tolerance to saline-alkaline soils. Soil salinization is a widespread environmental pressure. To use A. cicer L. more scientifically and environmentally in agriculture and ecosystems, it is highly important to study the molecular response mechanism of A. cicer L. to salt stress. RESULTS: In this study, we used RNA-seq technology and weighted gene coexpression network analysis (WGCNA) were performed. The results showed 4 key modules were closely related to the physiological response of A. cicer. L. to salt stress. The differentially expressed genes (DEGs) of key modules were mapped into the KEGG database, and found that the most abundant pathways were the plant hormone signal transduction pathway and carbon metabolism pathway. The potential regulatory networks of the cytokinin signal transduction pathway, the ethylene signal transduction pathway, and carbon metabolism related pathways were constructed according to the expression pathways of the DEGs. Seven hub genes in the key modules were selected and distributed among these pathways. They may involved in the positive regulation of cytokinin signaling and carbon metabolism in plant leaves, but limited the positive expression of ethylene signaling. Thus endowing the plant with salt tolerance in the early stage of salt stress. CONCLUSIONS: Based on the phenotypic and physiological responses of A. cicer L. to salt stress, this study constructed the gene coexpression network of potential regulation to salt stress in key modules, which provided a new reference for exploring the response mechanism of legumes to abiotic stress.


Assuntos
Astrágalo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estresse Salino , Transcriptoma , Estresse Salino/genética , Astrágalo/genética , Astrágalo/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
6.
Cell Commun Signal ; 22(1): 359, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992691

RESUMO

PURPOSE: Bietti crystalline dystrophy (BCD) is an inherited retinal degeneration disease caused by mutations in the CYP4V2 gene. Currently, there is no clinical therapy approach available for BCD patients. Previous research has suggested that polyunsaturated fatty acids (PUFAs) may play a significant role in the development of BCD, implicating the involvement of ferroptosis in disease pathogenesis. In this work, we aimed to investigate the interplay between ferroptosis and BCD and to detect potential therapeutic strategies for the disease. METHODS: Genetic-edited RPE cell line was first established in this study by CRISPR-Cas9 technology. Cyp4v3 (the homologous gene of human CYP4V2) knock out (KO) mice have also been used. Lipid profiling and transcriptome analysis of retinal pigment epithelium (RPE) cells from Cyp4v3 KO mice have been conducted. Ferroptosis phenotypes have been first investigated in BCD models in vitro and in vivo, including lipid peroxidation, mitochondrial changes, elevated levels of reactive oxygen species (ROS), and altered gene expression. Additionally, an iron chelator, deferiprone (DFP), has been tested in vitro and in vivo to determine its efficacy in suppressing ferroptosis and restoring the BCD phenotype. RESULTS: Cyp4v3 KO mice exhibited progressive retinal degeneration and lipid accumulation, similar to the BCD phenotype, which was exacerbated by a high-fat diet (HFD). Increased levels of PUFAs, such as EPA (C22:5) and AA (C20:4), were observed in the RPE of Cyp4v3 KO mice. Transcriptome analysis of RPE in Cyp4v3 KO mice revealed changes in genes involved in iron homeostasis, particularly an upregulation of NCOA4, which was confirmed by immunofluorescence. Ferroptosis-related characteristics, including mitochondrial defects, lipid peroxidation, ROS accumulation, and upregulation of related genes, were detected in the RPE both in vitro and in vivo. Abnormal accumulation of ferrous iron was also detected. DFP, an iron chelator administration suppressed ferroptosis phenotype in CYP4V2 mutated RPE. Oral administration of DFP also restored the retinal function and morphology in Cyp4v3 KO mice. CONCLUSION: This study represented the first evidence of the substantial role of ferroptosis in the development of BCD. PUFAs resulting from CYP4V2 mutation may serve as substrates for ferroptosis, potentially working in conjunction with NCOA4-regulated iron accumulation, ultimately leading to RPE degeneration. DFP administration, which chelates iron, has demonstrated its ability to reverse BCD phenotype both in vitro and in vivo, suggesting a promising therapeutic approach in the future.


Assuntos
Distrofias Hereditárias da Córnea , Ferroptose , Camundongos Knockout , Epitélio Pigmentado da Retina , Animais , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/tratamento farmacológico , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/tratamento farmacológico , Família 4 do Citocromo P450/genética , Camundongos Endogâmicos C57BL , Linhagem Celular , Peroxidação de Lipídeos/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 281: 116633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941659

RESUMO

Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.


Assuntos
Cádmio , Parede Celular , Raízes de Plantas , Polissacarídeos , Poluentes do Solo , Parede Celular/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Poa/efeitos dos fármacos , Poa/metabolismo , Transporte Biológico
8.
BMC Genomics ; 24(1): 498, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644390

RESUMO

BACKGROUND: Alfalfa (Medicago sativa) is the most widely planted legume forage and one of the most economically valuable crops in the world. The periodic changes in its growth and development and abiotic stress determine its yield and economic benefits. Auxin controls many aspects of alfalfa growth by regulating gene expression, including organ differentiation and stress response. Auxin response factors (ARF) are transcription factors that play an essential role in auxin signal transduction and regulate the expression of auxin-responsive genes. However, the function of ARF transcription factors is unclear in autotetraploid-cultivated alfalfa. RESULT: A total of 81 ARF were identified in the alfalfa genome in this study. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, identifying that ARF genes are mainly involved in transcriptional regulation and plant hormone signal transduction pathways. Phylogenetic analysis showed that MsARF was divided into four clades: I, II, III, and IV, each containing 52, 13, 7, and 9 genes, respectively. The promoter region of the MsARF gene contained stress-related elements, such as ABRE, TC-rich repeats, MBS, LTR. Proteins encoded by 50 ARF genes were localized in the nucleus without guide peptides, signal peptides, or transmembrane structures, indicating that most MsARF genes are not secreted or transported but only function in the nucleus. Protein structure analysis revealed that the secondary and tertiary structures of the 81 MsARF genes varied. Chromosomal localization analysis showed 81 MsARF genes were unevenly distributed on 25 chromosomes, with the highest distribution on chromosome 5. Furthermore, 14 segmental duplications and two sets of tandem repeats were identified. Expression analysis indicated that the MsARF was differentially expressed in different tissues and under various abiotic stressors. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression profiles of 23 MsARF genes were specific to abiotic stresses such as drought, salt, high temperature, and low temperature, as well as tissue-specific and closely related to the duration of stress. CONCLUSION: This study identified MsARF in the cultivated alfalfa genome based on the autotetraploid level, which GO, KEGG analysis, phylogenetic analysis, sequence characteristics, and expression pattern analysis further confirmed. Together, these findings provide clues for further investigation of MsARF functional verification and molecular breeding of alfalfa. This study provides a novel approach to systematically identify and characterize ARF transcription factors in autotetraploid cultivated alfalfa, revealing 23 MsARF genes significantly involved in response to various stresses.


Assuntos
Ácidos Indolacéticos , Medicago sativa , Medicago sativa/genética , Filogenia , Reguladores de Crescimento de Plantas , Estresse Fisiológico/genética
9.
Mol Carcinog ; 62(5): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727616

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Bicarbonatos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias de Cabeça e Pescoço/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular/genética , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo
10.
Int Microbiol ; 26(1): 81-90, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36056293

RESUMO

There is a need for new anti-Candida albicans (C. albicans) drugs owing to the emergence of drug resistance in recent years. AMP-17, an antimicrobial peptide from Musca domestica (M. domestica), is known to be an effective inhibitor of many fungal pathogens, including C. albicans. In this study, we investigated the potential mechanism underlying the anti-C. albicans effects of AMP-17 using flow cytometry, transmission electron microscopy, fluorescent probes, fluorescence microplate reader, and confocal laser microscopy. Transmission electron microscopy showed that, following AMP-17 treatment, the shape of C. albicans cells became irregular, and vacuoles could be seen in the cytoplasm. Furthermore, AMP-17 treatment resulted in an increase in reactive oxygen species (ROS) levels, depolarization of the mitochondrial membrane potential (MMP), and changes in the cell cycle, leading to the apoptosis and necrosis, which ultimately contributed to the death of C. albicans cells.


Assuntos
Antifúngicos , Peptídeos Antimicrobianos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Candida albicans , Apoptose , Necrose
11.
Ecotoxicol Environ Saf ; 249: 114460, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321679

RESUMO

The application of phytohormones is a viable technique to increase the efficiency of phytoremediation in heavy metal-contaminated soils. The objective of this study was to determine how the application of 24-epibrassinolide (EBR), a brassinosteroid analog, could regulate root growth and tolerance to cadmium (Cd) stress in Kentucky bluegrass. As a result, the number of lateral root primordia and total root length in the Cd-treated seedlings decreased by 33.1 % and 56.5 %, respectively. After the application of EBR, Cd accumulation in roots and leaves, and the negative effect of Cd on root growth were reduced under Cd stress. Additionally, the expression of the brassinosteroid signaling gene PpBRI1 was significantly upregulated by exogenous EBR. Moreover, exogenous EBR upregulated the expression of genes encoding antioxidant enzymes and improved the activity of antioxidant enzymes, thereby reduced oxidative stress in roots. Finally, targeted hormonomics analysis highlighted the utility of the application of EBR to alleviate the effect of Cd on the reduction in auxin (IAA) content and the increase in ethylene (ACC) content. These were known to be associated with the upregulation in the expression of auxin biosynthesis gene PpYUCCA1 and downregulation in the expression of ethylene biosynthesis gene PpACO1 in the roots treated with Cd stress. Overall, the application of EBR alleviated Cd-induced oxidative stress in addition to improving root elongation and lateral root growth crosstalk with auxin and ethylene in Kentucky bluegrass subjected to Cd stress. This study further highlights the potential role of brassinosteroids in improving the efficiency of phytoremediation for Cd-contaminated soils.


Assuntos
Brassinosteroides , Poa , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Antioxidantes/metabolismo , Cádmio/metabolismo , Ácidos Indolacéticos/metabolismo , Poa/metabolismo , Kentucky , Etilenos/metabolismo , Solo , Raízes de Plantas/metabolismo
12.
BMC Plant Biol ; 22(1): 509, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319971

RESUMO

BACKGROUND: Poa pratensis is one of the most common cold-season turfgrasses used for urban turf building, and it is also widely used in ecological environment management worldwide. Powdery mildew is a common disease of P. pratensis. To scientifically and ecologically control lawn powdery mildew, the molecular mechanism underlying the response of P. pratensis to powdery mildew infection must better understood. RESULTS: To explore molecular mechanism underlying the response of P. pratensis to powdery mildew infection, this study compared physiological changes and transcriptomic level differences between the highly resistant variety 'BlackJack' and the extremely susceptible variety 'EverGlade' under powdery mildew infection conditions. We analyzed DEGs using reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that "starch and sucrose metabolism", "photosynthesis" and "fatty acid metabolism"pathways were only enriched in 'BlackJack', and the expression of DEGs such as HXK, INV, GS, SS, AGpase and ß-amylase in "starch and sucrose metabolism" pathway of 'BlackJack' were closely related to powdery mildew resistance. Meanwhile, compared with 'EverGlade', powdery mildew infection promoted synthesis of sucrose, expression of photosynthesis parameters and photosynthesis-related enzymes in leaves of 'BlackJack' and decreased accumulation of monosaccharides such as glucose and fructose. CONCLUSIONS: This study identified the key metabolic pathways of a P. pratensis variety with high resistance to powdery mildew infection and explored the differences in physiological characteristics and key genes related to sugar metabolism pathways under powdery mildew stress. These findings provide important insights for studying underlying molecular response mechanism.


Assuntos
Ascomicetos , Poa , Transcriptoma , Resistência à Doença/genética , Poa/genética , Ascomicetos/fisiologia , Doenças das Plantas/genética , Kentucky , Perfilação da Expressão Gênica , Erysiphe , Sacarose , Amido
13.
Physiol Mol Biol Plants ; 28(7): 1359-1374, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051235

RESUMO

MADS-box genes play vital roles in multiple biological processes of plants growth and development, especially inflorescence development. In the present study, a comprehensive investigation into the identification and classification of MADS-box genes in Kentucky bluegrass (Poa pratensis) has not been reported. Here, based on the transcriptome of inflorescence, we identified 44 PpMADS-box genes, and gave an overview of the physicochemical properties, phylogeny, protein structures, and potential functions of the proteins encoded by these genes through various bioinformatics software for the first time. Analysis of physicochemical properties revealed that most PpMADS-box were alkaline proteins and possessed similar conserved motifs. Additionally, it was demonstrated that 33 PpMADS-box proteins without signal peptide, leading peptide, transmembrane structure and located in the nucleus were not transported or secreted, so directly played transcriptional regulatory roles in the nucleus. Then, peptide sequences BLAST search and analysis of phylogenetic relationships with MADS-box proteins of P. pratensis, Arabidopsis thaliana, and Oryza sativa were performed. It was found that 44 PpMADS-box proteins were separated into 33 MIKC-type (3 BS, 1 AGL17, 8 AP3/P2, 3 AP1, 5 SEP, 6 SOC and 7 AG genes, respectvely) and 11 type I-type, which include 7 Mγ and 4 Mα. Furthermore, the relative expression levels of the selected 12 genes (MADS3, 15, 16, 17, 18, 20, 24, 27, 30, 36, 38 and 40) at the booting stage, pre-anthesis, anthesis, post-anthesis, and seed filling stage of inflorescences, as well as leaves and roots of the corresponding stages of inflorescences were analyzed, showing that most PpMADS-box genes were highly expressed mainly in young leaves and later inflorescences, and had complex patters in roots. Morever, except for PpMADS30 being highly expressed in the leaves, others were significantly highly expressed in inflorescence and/ or roots, demonstrating PpMADS-box genes also regulate leaves and roots development in plant. This study provides valuable insights into the MADS-box family genes in Kentucky bluegrass and its potential functional characteristics, expression pattern, and evolution in floral organogenesis and even reproduction development. @media print { .ms-editor-squiggler { display:none !important; } } .ms-editor-squiggler { all: initial; display: block !important; height: 0px !important; width: 0px !important; }. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01216-1.

14.
Ecotoxicol Environ Saf ; 212: 112002, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529920

RESUMO

Perennial ryegrass (Lolium perenne L.), a grass species with superior tillering capacity, plays a potential role in the phytoremediation of cadmium (Cd)-contaminated soils. Tiller production is inhibited in response to serious Cd stress. However, the regulatory mechanism of Cd stress-induced inhibition of tiller development is not well documented. To address this issue, we investigated the phenotype, the expression levels of genes involved in axillary bud initiation and bud outgrowth, and endogenous hormone biosynthesis and signaling pathways in seedlings of perennial ryegrass under Cd stress. The results showed that the number of tillers and axillary buds in the Cd-treated seedlings decreased by 67% and 21%, respectively. The suppression of tiller production in the Cd-treated seedlings was more closely associated with the inhibition of axillary bud outgrowth than with bud initiation. Cd stress upregulated the expression level of genes related to axillary bud dormancy and downregulated bud activity genes. Additionally, genes involved in strigolactone biosynthesis and signaling, auxin transport and signaling, and cytokinin degradation were upregulated in Cd-treated seedlings, and cytokinin biosynthesis gene expression were decreased by Cd stress. The content of zeatin in the Cd-treated pants was significantly reduced by 69~85% compared to the control plants. The content of indole-3-acetic acid (IAA) remains constant under Cd stress. Overall, Cd stress induced axillary bud dormancy and subsequently inhibited axillary bud outgrowth. The decrease of zeatin content and upregulation of genes involved in strigolactone signaling and bud dormancy might be responsible for the inhibition of axillary bud outgrowth.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lolium/efeitos dos fármacos , Poluentes do Solo/toxicidade , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Lolium/genética , Lolium/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
15.
Cancer Sci ; 111(2): 356-368, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778279

RESUMO

Metastasis is a critical determinant for the treatment strategy and prognosis in patients with squamous cell carcinoma of the head and neck (SCCHN). However, the mechanisms underlying SCCHN metastasis are poorly understood. Our study sought to determine the key microRNA and their functional mechanisms involved in SCCHN metastasis. For The Cancer Genome Atlas (TCGA) data analysis, quantitative PCR was used to quantify the level of miR-30e-5p in SCCHN and its clinical significance was further analyzed. A series of in vitro and in vivo experiments were applied to determine the effects of miR-30e-5p and its target AEG-1 on SCCHN metastasis. A mechanism investigation further revealed that AEG-1 was implicated in the angiogenesis and metastasis mediated by miR-30e-5p. Overall, our study confirms that miR-30e-5p is a valuable predictive biomarker and potential therapeutic target in SCCHN metastasis.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Proteínas de Ligação a RNA/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Transplante de Neoplasias , Neovascularização Patológica/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Análise de Sobrevida
16.
BMC Plant Biol ; 20(1): 362, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736517

RESUMO

BACKGROUND: Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS: To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. 'Baron' (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as "starch and sucrose metabolism", "protein processing in endoplasmic reticulum", "phenylalanine metabolism" and "glycolysis/gluconeogenesis" were significantly enriched in PQ, and "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "galactose metabolism" and "glutathione metabolism" were significantly enriched in PB. In addition, the "glycolysis" and "citrate cycle (TCA cycle)" pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS: As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype.


Assuntos
Resposta ao Choque Frio/genética , Poa/fisiologia , Ácido Cítrico/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Glicólise , Anotação de Sequência Molecular , Fenótipo , Poa/genética , Poa/metabolismo , RNA-Seq
17.
J Cell Mol Med ; 23(7): 4711-4722, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111621

RESUMO

The canonical Wnt/ß-catenin signalling pathway and autophagy play critical roles in cancer progression. However, the role of Wnt-mediated autophagy in cancer radioresistance remains unclear. In this study, we found that irradiation activated the Wnt/ß-catenin and autophagic signalling pathways in squamous cell carcinoma of the head and neck (SCCHN). Wnt3a is a classical ligand that activated the Wnt/ß-catenin signalling pathway, induced autophagy and decreased the sensitivity of SCCHN to irradiation both in vitro and in vivo. Further mechanistic analysis revealed that Wnt3a promoted SCCHN radioresistance via protective autophagy. Finally, expression of the Wnt3a protein was elevated in both SCCHN tissues and patients' serum. Patients showing high expression of Wnt3a displayed a worse prognosis. Taken together, our study indicates that both the canonical Wnt and autophagic signalling pathways are valuable targets for sensitizing SCCHN to irradiation.


Assuntos
Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteína Wnt3A/metabolismo , Animais , Autofagia/efeitos da radiação , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Elétrons , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Tolerância a Radiação/efeitos da radiação , Análise de Sobrevida , Via de Sinalização Wnt/efeitos da radiação
18.
Molecules ; 23(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558428

RESUMO

Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic resistance (ISR) response. In this study, butanediol (BDO), as a new type of disease-resistance compound, was applied to creeping bentgrass seedlings to induce the ISR response. Then, we measured ethylene production and related enzyme activities. Additionally, transcript profiling and gene identification were performed in association to ethylene signal transduction pathways. The changes of ethylene production and related enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid synthases (ACS) activities showed significant difference at 24 h after Rhizoctonia solani inoculation among five treatments of various BDO concentrations. After 100 µmol L-1 BDO treatment, ethylene production and related enzyme activities reached their peak levels. Additionally, 208,672 unigenes of creeping bentgrass were obtained by de novo assembly. In total, 15,903 annotated unigenes were grouped into 33 canonical pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. Among those, 1803 unigenes were classified as 'signal transduction'. There were 6766 differentially expressed genes (DEGs) among B24 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h), NB24, B72 and NB24 (no rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h) libraries, and 4,639 DEGs between B24 and B72 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 72 h) libraries, with 4489 DEGs in all three libraries. As suggested by the RT-PCR assay, the expression levels of ethylene-responsive and defense-related genes were variable among treated samples during the BDO-induced ISR responses. The expression levels of EIN, ERF, NPR1, PR3 and PR4 genes increased and reached their peaks in the first 24 h after R. solani infection in the BDO-induced ISR reaction compared with NB24 treatments. This results is consistent with the changes of important ethylene biosynthetic enzymes and ethylene concentrations during the BDO-induced ISR responses. We further found the intermediate substances for the signaling pathway, and the relationships between the expression levels of BDO-induced ISR disease-resistance genes and those of the response genes for ethylene signal pathway. Our findings present a genetic basis for systemic resistance of creeping bentgrass through transcriptomic analysis and our study provides a theoretical and practical basis for the improvement of turfgrass disease resistance and quality.


Assuntos
Agrostis/genética , Agrostis/imunologia , Butileno Glicóis/farmacologia , Resistência à Doença/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Transdução de Sinais , Agrostis/efeitos dos fármacos , Agrostis/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
19.
Biochem Biophys Res Commun ; 490(3): 746-752, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28645609

RESUMO

Antimicrobial peptides/proteins are immune-related molecules that are widely distributed in bacteria, fungi, plants, invertebrates and higher animals. They have exhibited great potential to be developed into antimicrobial drugs. The housefly, Musca domestica, lives in a highly contaminated environment and has adapted a robust immune system against various pathogens. As an effort to search for new antimicrobial molecules in the housefly, we investigated the function of an uncharacterized gene firstly by confirming that its expression was induced by infection in M. domestica. The corresponding protein was then shown to have potent antimicrobial activity. Scanning Electron Microscopy data showed that treatment of C. albicans cells with the protein caused cell size decreasing and cell elongation. The results here suggest the protein a novel class of antimicrobial protein and provide new insights into the immunological mechanisms by which M. domestica combats invading C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Moscas Domésticas/microbiologia , Proteínas de Insetos/farmacologia , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/imunologia , Antifúngicos/metabolismo , Candida albicans/imunologia , Candidíase/tratamento farmacológico , Candidíase/imunologia , Clonagem Molecular , Genes de Insetos , Moscas Domésticas/química , Moscas Domésticas/genética , Moscas Domésticas/imunologia , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia
20.
J Insect Sci ; 17(4)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973494

RESUMO

Chaperonins, belonging to the T-complex protein-1 (TCP-1) family, assist in the correct folding of nascent and misfolded proteins. It is well-known that in mammals, the zeta subunit of the TCP-1 complex (TCP-1ζ) plays a vital role in the folding and assembly of cytoskeleta proteins. This study reported for the first time the cloning, characterization and expression pattern analysis of the TCP-1ζ from Musca domestica, which was named as MdTCP-1ζ. The MdTCP-1ζ cDNA is 1,803 bp long with a 1,596 bp open reading frame that encodes a protein with 531 bp amino acids. The analysis of the transcriptional profile of MdTCP-1ζ using qRT-PCR revealed relatively high expression in the salivary glands and trachea at the tissues while among the developmental stages. The highest expression was observed only in the eggs suggesting that the MdTCP-1ζ may play a role in embryonic development. The expression of MdTCP-1ζ was also significantly induced after exposure to short-term heat shock and infection by Escherichia coli, Staphylococcus aureus, or Candida albicans. This suggested that MdTCP-1ζ may take part in the immune responses of housefly and perhaps contribute to the protection against cellular injury.


Assuntos
Chaperonina com TCP-1/metabolismo , Moscas Domésticas/metabolismo , Animais , Chaperonina com TCP-1/química , Feminino , Expressão Gênica , Moscas Domésticas/crescimento & desenvolvimento , Moscas Domésticas/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/imunologia , Larva/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA