Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Semin Immunol ; 67: 101753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060806

RESUMO

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Assuntos
Fusarium , Ceratite , Humanos , Fungos , Córnea/microbiologia , Córnea/patologia , Ceratite/microbiologia , Ceratite/patologia , Fusarium/fisiologia , Neutrófilos
2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401527

RESUMO

Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.


Assuntos
Adaptação Fisiológica , Inversão Cromossômica , Animais , Adaptação Fisiológica/genética , Clima , Temperatura , Insetos
4.
Am J Physiol Cell Physiol ; 326(5): C1423-C1436, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497113

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Quinurenina 3-Mono-Oxigenase , NAD , Triptofano , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/enzimologia , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Camundongos Endogâmicos C57BL , NAD/metabolismo , NAD/biossíntese , Triptofano/metabolismo
5.
PLoS Pathog ; 18(5): e1010157, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512028

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.


Assuntos
Fusarium , MicroRNAs , Musa , Expressão Gênica , Hidrolases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Musa/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética
6.
Inorg Chem ; 63(13): 5961-5971, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494631

RESUMO

Titanium-oxo cluster (TOC)-based metal-organic frameworks (MOFs) have received considerable attention in recent years due to their ability to expand the application of TOCs to fields that require highly stable frameworks. Herein, a new cyclic TOC formulated as [Ti6O6(OiPr)8(TTFTC)(phen)2]2 (1, where TTFTC = tetrathiafulvalene tetracarboxylate and phen = phenanthroline) was crystallographically characterized. TOC 1 takes a rectangular ring structure with two phen-modified Ti6 clusters as the width and two TTFTC ligands as the length. An intracluster ligand-to-ligand (TTF-to-phen) charge transfer in 1 was found for TOCs for the first time. Compound 1 undergoes topotactic conversion to generate stable TOC-MOF P1, in which the rectangular framework in 1 formed by a TOC core and ligands is retained, as verified by comprehensive characterization. P1 shows an efficient and rapid selective adsorption capacity for cationic dyes. The experimental adsorption capacity (qex) of P1 reaches a value of up to 789.2 mg/g at 298 K for the crystal violet dye, which is the highest among those of various adsorbents. The calculated models are first used to reveal the structure-property relationship of the cyclic host to different guest dyes. The results further confirmed the host MOF structure of P1.

7.
Mol Plant Microbe Interact ; 36(1): 4-13, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36279112

RESUMO

Plant xylem colonization is the hallmark of vascular wilt diseases caused by phytopathogens within the Fusarium oxysporum species complex. Recently, xylem colonization has also been reported among endophytic F. oxysporum strains, resulting in some uncertainty. This study compares xylem colonization processes by pathogenic versus endophytic strains in Arabidopsis thaliana and Solanum lycopersicum, using Arabidopsis pathogen Fo5176, tomato pathogen Fol4287, and the endophyte Fo47, which can colonize both plant hosts. We observed that all strains were able to advance from epidermis to endodermis within 3 days postinoculation (dpi) and reached the root xylem at 4 dpi. However, this shared progression was restricted to lateral roots and the elongation zone of the primary root. Only pathogens reached the xylem above the primary-root maturation zone (PMZ). Related to the distinct colonization patterns, we also observed stronger induction of callose at the PMZ and lignin deposition at primary-lateral root junctions by the endophyte in both plants. This observation was further supported by stronger induction of Arabidopsis genes involved in callose and lignin biosynthesis during the endophytic colonization (Fo47) compared with the pathogenic interaction (Fo5176). Moreover, both pathogens encode more plant cell wall-degrading enzymes than the endophyte Fo47. Therefore, observed differences in callose and lignin deposition could be the combination of host production and the subsequent fungal degradation. In summary, this study demonstrates spatial differences between endophytic and pathogenic colonization, strongly suggesting that further investigations of molecular arm-races are needed to understand how plants differentiate friend from foe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Arabidopsis , Fusarium , Solanum lycopersicum , Lignina , Doenças das Plantas/microbiologia , Fusarium/genética , Raízes de Plantas/microbiologia
8.
Mol Plant Microbe Interact ; 36(1): 64-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36513027

RESUMO

The filamentous fungus Fusarium graminearum is a well-known cereal pathogen and F. avenaceum is a pathogen with a wide host range. Recently, both species were reported as causal agents of apple rot, raising concerns about postharvest yield losses and mycotoxin contamination. Here, we report genome assemblies of F. avenaceum KA13 and F. graminearum TaB10, both isolated from fruits with symptoms of apple rot. The final F. avenaceum KA13 genome sequence assembly of 41.7 Mb consists of 34 scaffolds, with an N50 value of 2.2 Mb and 15,886 predicted genes. The total size of the final F. graminearum TaB10 assembly is 36.76 Mb, consisting of 54 scaffolds with an N50 value of 1.7 Mb, and it consists of 14,132 predicted genes. These new genomes provide valuable resources to better understand plant-microbe interaction in stored apple rot disease. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Fusarium , Malus , Fusarium/genética , Frutas , Doenças das Plantas/microbiologia
9.
Lab Invest ; 103(2): 100015, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039147

RESUMO

Exogenous erythropoietin (EPO) is used to treat anemia in patients with chronic kidney disease (CKD). Concerns about the possible adverse effect of EPO on the progression of CKD have been raised owing to nonerythroid cell effects. We investigated the effects of low-dose EPO, independent of correcting anemia, on existing glomerulosclerosis. Adult mice underwent 5/6 nephrectomy and were randomized into the following 4 groups at week 8 after surgery: vehicle (VEH), losartan (angiotensin II type 1 receptor blocker [ARB]), darbepoetin-α (DA), or combination (DA+ARB). Four weeks later, mice were euthanized, followed by evaluation of renal structure and function. Glomerular endothelial cells and podocytes were cultured to evaluate the effects of DA on cell migration, apoptosis, and Akt signaling. ARB reduced blood pressure, albuminuria, and the level of serum creatinine and increased hematocrit compared with VEH, whereas low-dose DA only reduced the level of serum creatinine. Combination treatment showed a trend to increase hematocrit and survival compared with ARB alone. Combination treatment but not ARB alone significantly reduced the progression of glomerulosclerosis compared with VEH. Low-dose DA resulted in more preserved glomerular and peritubular capillary endothelial cells with increased p-Akt and even further endothelial cell preservation in combination with ARB. In cultured glomerular endothelial cells, angiotensin II induced more apoptosis, reduced migration, and decreased p-Flk1, a receptor for the proangiogenic vascular endothelial growth factor. DA counteracted these injuries and increased p-Akt, a key factor in angiogenesis and cell survival. DA also protected cultured podocytes against transforming growth factor ß-induced apoptosis and synaptopodin loss. Low-dose EPO directly protects glomerular and peritubular endothelial cells via Akt phosphorylation. Therefore, treatment using a combination of low-dose EPO and ARB results in less progression of glomerulosclerosis in an experimental CKD model.


Assuntos
Eritropoetina , Insuficiência Renal Crônica , Camundongos , Animais , Angiotensina II/metabolismo , Creatinina , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Eritropoetina/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico
10.
Mol Ecol ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277936

RESUMO

Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA