Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27019227

RESUMO

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Assuntos
DNA Polimerase I/metabolismo , DNA/biossíntese , Interferon Tipo I/metabolismo , RNA/biossíntese , Sequência de Bases , Células Cultivadas , Citosol/metabolismo , DNA/genética , DNA Polimerase I/genética , Saúde da Família , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Proc Natl Acad Sci U S A ; 120(43): e2304826120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844251

RESUMO

Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country's food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China's agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general.


Assuntos
Gado , Eliminação de Resíduos , Animais , Efeito Estufa , Alimentos , Carbono , Biodiversidade , Temperatura , Agricultura , Segurança Alimentar , China
3.
EMBO J ; 40(21): e107277, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34558085

RESUMO

The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Colina/metabolismo , Proteína Duplacortina/genética , Proteína Duplacortina/metabolismo , Feto , Ontologia Genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/citologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais , Estatmina/genética , Estatmina/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Plant Physiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728423

RESUMO

Cysteine desulfhydrase (LCD) catalyzes the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.

5.
Plant Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889048

RESUMO

Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, Systemic Acquired Resistance Deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, four uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is inter-changeable with CBP60b, suggesting clade-specific functionalization. We further show that function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii, are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest CBP60b clade transcription factors are functionally conserved in evolution and positively mediate immunity.

6.
Proc Natl Acad Sci U S A ; 119(24): e2121138119, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675422

RESUMO

Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited. To address these challenges, we investigated MeOH as an alternative electrolyte solvent. These MeOH-based electrolytes exhibited exceptional Zn reversibility over a wide temperature range, with a Coulombic efficiency > 99.5% at 50% Zn utilization without cell short-circuit behavior for > 1,800 h. More important, this remarkable performance translates well to Zn || metal-free organic cathode full cells, supporting < 6% capacity decay after > 800 cycles at -40 °C.

7.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211606

RESUMO

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
8.
J Cell Mol Med ; 28(1): e18006, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850543

RESUMO

Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, it is essential to identify pathogenic germline genetic variants, especially those in oncogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit (TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adenosine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting functions in several cancer types. However, the contribution of its genetic variants to hepatoblastoma remains unclear. In this study, we investigated the association between four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 healthy controls. Germline DNA was subjected to polymorphism genotyping via the TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 G > A and rs236110 C > A polymorphisms were significantly associated with hepatoblastoma risk. Combination analysis of the four polymorphisms revealed that children bearing 1-4 risk genotypes were at significantly enhanced hepatoblastoma risk compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19-1.95, p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. Ultimately, we found that the rs236110 C > A was significantly associated with the downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant further validation by extensive case-control studies across different ethnicities.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Estudos de Casos e Controles , Neoplasias Hepáticas/genética , Polimorfismo Genético , tRNA Metiltransferases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
9.
Pflugers Arch ; 476(2): 197-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994929

RESUMO

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.


Assuntos
Doença da Altitude , Edema Encefálico , Disfunção Cognitiva , Humanos , Hipóxia/complicações , Doença da Altitude/prevenção & controle , Aclimatação/fisiologia , Doença Aguda , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle
10.
Int J Cancer ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894502

RESUMO

Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.

11.
Cancer Sci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590234

RESUMO

Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.

12.
BMC Plant Biol ; 24(1): 454, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789943

RESUMO

Pleiotropy is frequently detected in agronomic traits of wheat (Triticum aestivum). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B, proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.


Assuntos
Alelos , Cromossomos de Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Fenótipo , Pleiotropia Genética , Melhoramento Vegetal
13.
Small ; : e2401797, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577831

RESUMO

The interfacial 2D/3D perovskite heterostructures have attracted extensive attention due to their unique ability to combine the high stability of 2D perovskites with the remarkable efficiency of 3D perovskites. However, the carrier transport mechanism within the 2D/3D perovskite heterostructures remains unclear. In this study, the carrier transport dynamics in 2D/3D perovskite heterostructures through a variety of time-resolved spectroscopic measurements is systematically investigated. Time-resolved photoluminescence results reveal nanosecond hole transfer from the 3D to 2D perovskites, with enhanced efficiency through the introduction of fluorine atoms on the phenethylammonium (PEA) cation. Transient absorption measurements unveil the ultrafast picosecond electron and energy transfer from 2D to 3D perovskites. Furthermore, it is demonstrated that the positioning of fluorination on the PEA cations effectively regulates the efficiency of charge and energy transfer within the heterostructures. These insightful findings shed light on the underlying carrier transport mechanism and underscore the critical role of cation fluorination in optimizing carrier transport within 2D/3D perovskite heterostructure-based devices.

14.
Small ; : e2311041, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342590

RESUMO

The directional conversion of methane to ethylene is challenging due to the dissociation of the C─H bond and the self-coupling of methyl intermediates. Herein, a novel W/WO3- x catalyst with the fork vein structure consisting of an alternating arrangement of WO3- x and W is developed. Impressively, the catalyst achieves an unprecedented C2 H4 yield of 1822.73 µmol g-1  h-1 , with a selectivity of 82.49%. The enhanced catalytic activity is ascribed to the multifunctional synergistic effect induced by oxygen vacancies and W sites in W/WO3- x . Oxygen vacancies provide abundant coordination of unsaturation sites, which promotes the adsorption and activation of CH4 , thus reducing the dissociation energy barrier of the C─H bond. The CH2 coupling barrier on the metal W surface is significantly lower compared to WO3 , so CH2 can migrate to the W site for coupling. Importantly, the W/WO3- x with high periodicity provides multiple ordered local microelectric fields, and CH2 intermediates with dipole moments undergo orientation polarization and displacement polarization driven by the electric field, thus enabling CH2 migration. This work opens a new avenue for the structural design and modulation of photocatalysts, and provides new perspectives on the migration of methylene between multiple active sites.

15.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013483

RESUMO

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Assuntos
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Anti-Inflamatórios/metabolismo
16.
Opt Express ; 32(10): 16746-16760, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858873

RESUMO

Strong near-field enhancements (NFEs) of nanophotonic structures are believed to be closely related to high Purcell factors (FP). Here, we theoretically show that the correlation is partially correct; the extinction cross section (σ) response is also critical in determining FP. The divergence between NFE and FP is especially pronounced in plasmonic-dielectric hybrid systems, where the plasmonic antenna supports dipolar plasmon modes and the dielectric cavity hosts Mie-like resonances. The cavity's enhanced-field environment can boost the antenna's NFEs, but the FP is not increased concurrently due to the larger effective σ that is intrinsic to the FP calculations. Interestingly, the peak FP for the coupled system can be predicted by using the NFE and σ responses. Furthermore, the limits for FP of coupled systems are considered; they are determined by the sum of the FP of a redshifted (or modified, if applicable) antenna and an individual cavity. This contrasts starkly with the behavior of NFE which is closely associated with the multiplicative effects of the NFEs provided by the antenna and the dielectric cavity. The differing behaviors of NFE and FP in hybrid cavities have varied impacts on relevant nanophotonic applications such as fluorescence, Raman scattering and enhanced light-matter interactions.

17.
Cardiovasc Diabetol ; 23(1): 7, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172903

RESUMO

BACKGROUND: The triglyceride-glucose (TyG) index is a reliable surrogate marker of insulin resistance and previous studies have confirmed the association of TyG index with incident chronic kidney disease (CKD). However, the impact of longitudinal patterns of TyG index on CKD risk among non-diabetic population is still unknown. Therefore, this study aimed to investigate the association of longitudinal patterns of TyG index with incident CKD among non-diabetic population. METHODS: A total of 5484 non-diabetic participants who underwent one health examination per year from 2015 to 2017 were included in this prospective study. TyG index variability and cumulative TyG index were calculated to assess the longitudinal patterns of TyG index. Cox proportional hazard models were performed to estimate the association of TyG index variability or cumulative TyG index with incident CKD. RESULTS: During a median of 3.82 years follow-up, 879 participants developed CKD. Compared with participants in the lowest quartile, the hazard ratio (HR) and 95% confidence interval (CI) of incident CKD were 1.772 (95% CI: 1.453, 2.162) for the highest TyG index variability quartile and 2.091 (95% CI: 1.646, 2.655) for the highest cumulative TyG index quartile in the fully adjusted models. The best discrimination and reclassification improvement were observed after adding baseline TyG, TyG index variability and cumulative TyG index to the clinical risk model for CKD. CONCLUSIONS: Both TyG index variability and cumulative TyG index can independently predict incident CKD among non-diabetic population. Monitoring longitudinal patterns of TyG index may assist with prediction and prevention of incident CKD.


Assuntos
Glucose , Insuficiência Renal Crônica , Humanos , Incidência , Estudos Prospectivos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Triglicerídeos , Glicemia , Fatores de Risco , Biomarcadores
18.
Glob Chang Biol ; 30(3): e17256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532549

RESUMO

Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Ecossistema , Desnitrificação , Carbono , Solo , Nitrogênio , Oxirredução
19.
Glob Chang Biol ; 30(2): e17181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372171

RESUMO

Nitrous oxide (N2 O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2 O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2 O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2 O emissions are universal across varying plant taxa, what the global significance of foliar N2 O emissions is, and how the foliage produces N2 O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2 O under in situ conditions. Using 15 N isotopic labeling, we demonstrated that the foliage-emitted N2 O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back-inoculating of endophytes, we demonstrated that the foliar N2 O emissions were driven by endophytic bacteria. The seasonal N2 O emission rates ranged from 3.2 to 9.2 ng N2 O-N g-1 dried foliage h-1 . Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2 O emission to be 1.21 and 1.01 Tg N2 O-N year-1 , respectively. These estimates account for 6%-7% of the current global annual N2 O emission of 17 Tg N2 O-N year-1 , indicating that in situ foliar N2 O emission is a universal process for terrestrial plants and contributes significantly to the global N2 O inventory. This finding highlights the importance of measuring foliar N2 O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.


Assuntos
Gases de Efeito Estufa , Plantas , Solo , Atmosfera , Biomassa , Óxido Nitroso/análise
20.
J Magn Reson Imaging ; 59(1): 231-239, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199225

RESUMO

BACKGROUND: Double expression lymphoma (DEL) is a subtype of primary central nervous system lymphoma (PCNSL) that often has a poor prognosis. Currently, there are limited noninvasive ways to detect protein expression. PURPOSE: To detect DEL in PCNSL using multiparametric MRI-based machine learning. STUDY TYPE: Retrospective. POPULATION: Forty PCNSL patients were enrolled in the study among whom 17 were DEL (9 males and 8 females, 61.29 ± 14.14 years) and 23 were non-DEL (14 males and 9 females, 55.57 ± 14.16 years) with 59 lesions (28 DEL and 31 non-DEL). FIELD STRENGTH/SEQUENCE: ADC map derived from DWI (b = 0/1000 s/mm2 ), fast spin echo T2WI, T2FLAIR, and contrast-enhanced T1 weighted imaging (T1CE) were collected at 3.0 T. ASSESSMENT: Two raters manually segmented lesions by ITK-SNAP on ADC, T2WI, T2FLAIR and T1CE. A total of 2234 radiomics features from the tumor segmentation area were extracted. The t-test was conducted to filter the features, and elastic net regression algorithm combined with recursive feature elimination was used to calculate the essential features. Finally, 12 groups with combinations of different sequences were fitted to 6 classifiers, and the optimal models were selected. STATISTICAL TESTS: Continuous variables were assessed by the t-test, while categorical variables were assessed by the non-parametric test. Interclass correlation coefficient tested variables' consistency. Sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) were used to evaluate model performance. RESULTS: DEL status could be identified to varying degrees with 72 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Both SVMlinear and logistic regression (LR) combined with four sequence group had similar largest AUCmean (0.92 ± 0.09 vs. 0.92 ± 0.05), and SVMlinear was considered as the optimal model in this study since the F1-score of SVMlinear (0.88) was higher than that of LR (0.83). DATA CONCLUSION: Multiparametric MRI-based machine learning is promising in DEL detection. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Linfoma , Imageamento por Ressonância Magnética Multiparamétrica , Masculino , Feminino , Humanos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Estudos Retrospectivos , Aprendizado de Máquina , Linfoma/diagnóstico por imagem , Sistema Nervoso Central , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA