Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415332

RESUMO

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Cisplatino/efeitos adversos , Necroptose , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
2.
Clin Sci (Lond) ; 134(2): 103-122, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31898747

RESUMO

Alcohol consumption causes renal injury and compromises kidney function. The underlying mechanism of the alcoholic kidney disease remains largely unknown. In the present study, an alcoholic renal fibrosis animal model was first employed which mice received liquid diet containing alcohol for 4 to 12 weeks. The Masson's Trichrome staining analysis showed that kidney fibrosis increased at week 8 and 12 in the animal model that was further confirmed by albumin assay, Western blot, immunostaining and real-time PCR of fibrotic indexes (collagen I and α-SMA). In vitro analysis also confirmed that alcohol significantly induced fibrotic response (collagen I and α-SMA) in HK2 tubular epithelial cells. Importantly, both in vivo and in vitro studies showed alcohol treatments decreased Smad7 and activated Smad3. We further determined how the alcohol affected the balance of Smad7 (inhibitory Smad) and Smad3 (regulatory Smad). Genome-wide methylation sequencing showed an increased DNA methylation of many genes and bisulfite sequencing analysis showed an increased DNA methylation of Smad7 after alcohol ingestion. We also found DNA methylation of Smad7 was mediated by DNMT1 in ethyl alcohol (EtOH)-treated HK2 cells. Knockdown of Nox2 or Nox4 decreased DNMT1 and rebalanced Smad7/Smad3 axis, and thereby relieved EtOH-induced fibrotic response. The inhibition of reactive oxygen species by the intraperitoneal injection of apocynin attenuated renal fibrosis and restored renal function in the alcoholic mice. Collectively, we established novel in vivo and in vitro alcoholic kidney fibrosis models and found that alcohol induces renal fibrosis by activating oxidative stress-induced DNA methylation of Smad7. Suppression of Nox-mediated oxidative stress may be a potential therapy for long-term alcohol abuse-induced kidney fibrosis.


Assuntos
Metilação de DNA/genética , Etanol/efeitos adversos , Nefropatias/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Proteína Smad7/metabolismo , Acetofenonas/farmacologia , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , Túbulos Renais/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Lab Invest ; 98(7): 911-923, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29581579

RESUMO

E-cadherin is a major component of tubular adherent proteins that maintain intercellular contacts and cell polarity in epithelial tissue. It is involved in pathological processes of renal cell carcinoma and fibrotic diseases via epithelial-mesenchymal transition. Although studies have shown E-cadherin is significantly downregulated in acute kidney injury (AKI), its function in AKI is unknown. Here, we evaluated cell damage and inflammation in cisplatin-stimulated tubular epithelial cell lines after disrupting E-cadherin and restoring it with PPBICA, a small molecule identified by high-throughput screening. We also determined the therapeutic potential of restoring E-cadherin in vivo. Results show cisplatin reduced E-cadherin expression both in mouse kidney and proximal tubular epithelial cell lines (mTECs). PPBICA restored E-cadherin levels, which increased cell viability while attenuating programmed cell death. This may be mediated via deactivation of the RIPK1/RIPK3 axis and decreased caspase3 cleavage. In addition, PPBICA suppressed inflammatory response in cisplatin-treated mTECs, which correlated with suppressed NF-κB phosphorylation and promoter activity. In contrast, disruption of E-cadherin promoted cell damage and inflammation. PPBICA failed to further attenuate kidney damage in E-cadherin knockdown cells, indicating that PPBICA protects against mTECs through E-cadherin restoration. We also found that peritoneal injection of PPBICA in mice prevented loss of renal function and tubular damage by suppressing NF-κB-driven renal inflammation and RIPK-regulated programmed cell death. This was driven by restoration of E-cadherin in cisplatin nephropathy. Additionally, PPBICA attenuated cisplatin-induced kidney damage in an established AKI model, indicating its therapeutic potential in the treatment of AKI. In conclusion, E-cadherin plays functional roles in tubule integrity, programmed cell death, and renal inflammation. Our results underscore the potential of E-cadherin restoration as a novel therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Caderinas/metabolismo , Cisplatino/efeitos adversos , Substâncias Protetoras/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Inflamação/metabolismo , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Heliyon ; 10(8): e29159, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644860

RESUMO

Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality caused by various factor. The specific strategies for AKI are still lacking. GSK3ß is widely expressed in the kidneys. In acute models of injury, GSK3ß promotes the systemic inflammatory response, increases the proinflammatory release of cytokines, induces apoptosis, and alters cell proliferation. We screened a series of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives which are recognized as new GSK3ß inhibitors, and found that 5n had the least toxicity and the best cell protection. We then tested the anti-inflammatory and reno-protective effect of 5n in cisplatin-treated tubular epithelial cells. 5n had anti-inflammation effect indicated by phosphor-NF-κB detection. Finally, we found that 5n ameliorated renal injury and inflammation in cisplatin-induced AKI mouse model. Silencing GSK3ß inhibited cell injury and inflammation induced by cisplatin. We found that GSK3ß interacted with PP2Ac to modulate the activity of NF-κB. In conclusion, 5n, the novel GSK3ß inhibitor, protects against AKI via PP2Ac-dependent mechanisms which may provide a potential strategy for the treatment of AKI in clinic.

5.
Biomed Pharmacother ; 161: 114497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933382

RESUMO

The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.


Assuntos
Doenças Cardiovasculares , Receptores da Bombesina , Humanos , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina , Transdução de Sinais , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA