RESUMO
In this paper, a multi-stage A/O mud membrane composite process with segmented influent was constructed for the first time and compared with the traditional activated sludge process and the multi-stage A/O pure membrane process with segmented influent. The nitrogen removal efficiency of the process under different influencing factors was studied. Under the optimum conditions, the highest removal rate of ammonia nitrogen can reach 99%, and the average removal rate of total nitrogen was 80%. The removal rate of COD in effluent reached 93%. The relative abundance of Proteobacteria was the highest in the multi-stage A/O mud membrane composite reactor with segmented influent. The community diversity and richness of activated sludge and biofilm in aerobic pool were the highest. Dechloromonas, Flavobacterium and Rhodobacter were dominant bacteria, and they were aerobic denitrifying bacteria that significantly contributed to the removal rate of ammonia nitrogen.
Assuntos
Reatores Biológicos , Nitrogênio , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Bactérias/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismoRESUMO
BACKGROUND: Among the neurological complications of influenza in children, the most severe is acute necrotizing encephalopathy (ANE), with a high mortality rate and neurological sequelae. ANE is characterized by rapid progression to death within 1-2 days from onset. However, the knowledge about the early diagnosis of ANE is limited, which is often misdiagnosed as simple seizures/convulsions or mild acute influenza-associated encephalopathy (IAE). OBJECTIVE: To develop and validate an early prediction model to discriminate the ANE from two common neurological complications, seizures/convulsions and mild IAE in children with influenza. METHODS: This retrospective case-control study included patients with ANE (median age 3.8 (2.3,5.4) years), seizures/convulsions alone (median age 2.6 (1.7,4.3) years), or mild IAE (median age 2.8 (1.5,6.1) years) at a tertiary pediatric medical center in China between November 2012 to January 2020. The random forest algorithm was used to screen the characteristics and construct a prediction model. RESULTS: Of the 433 patients, 278 (64.2%) had seizures/convulsions alone, 106 (24.5%) had mild IAE, and 49 (11.3%) had ANE. The discrimination performance of the model was satisfactory, with an accuracy above 0.80 from both model development (84.2%) and internal validation (88.2%). Seizures/convulsions were less likely to be wrongly classified (3.7%, 2/54), but mild IAE (22.7%, 5/22) was prone to be misdiagnosed as seizures/convulsions, and a small proportion (4.5%, 1/22) of them was prone to be misdiagnosed as ANE. Of the children with ANE, 22.2% (2/9) were misdiagnosed as mild IAE, and none were misdiagnosed as seizures/convulsions. CONCLUSION: This model can distinguish the ANE from seizures/convulsions with high accuracy and from mild IAE close to 80% accuracy, providing valuable information for the early management of children with influenza.
Assuntos
Influenza Humana , Convulsões , Humanos , Influenza Humana/complicações , Influenza Humana/diagnóstico , Pré-Escolar , Estudos Retrospectivos , Feminino , Masculino , Estudos de Casos e Controles , Convulsões/diagnóstico , Convulsões/etiologia , Criança , Lactente , Diagnóstico Diferencial , China/epidemiologia , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Algoritmo Florestas AleatóriasRESUMO
As urban economies continue to evolve, the water distribution networks (WDNs) are expanding in scale and becoming more interconnected, leading to increased carbon emissions from operations and maintenance. Consequently, enhancing the stability and safety of WDNs while saving energy has emerged as a primary research focus. This study abandoned the original use of high economic costs for post-maintenance of WDNs. Instead, it reshaped the traditional water distribution topology to form a dynamic, storable, energy-efficient "WDN self-help" model. Drawing inspiration from the "deep tunnel" project in drainage systems, the proposal was to leverage underground spaces to create a deep aqueduct (DA) complementing the traditional WDN, forming a three-dimensional (3D) WDN. Hydraulic and water quality analyses of varying scales of the 3D WDN model demonstrated its superior ability to equalize node pressures, reduce pipeline head losses, and maintain water quality for end-users. Reliability assessments of the 3D WDN revealed enhanced system robustness for medium-to large-scale distributions, while energy consumption analyses indicated a significant increase in water supply energy utilization and significant long-term reductions in carbon footprint. A practical case study was presented to validate the effectiveness of the 3D WDN concept, confirming its ability to reliably distribute water even in the event of a failure. Finally, an estimate of the retrofit cost and the static payback period of the 3D WDN was conducted. This study aims to provide a theoretical reference for the renovation of water supply projects or the optimal design of new WDNs in the context of carbon neutrality.
RESUMO
Chiral hydroxylamines are increasingly common structural elements in pharmaceuticals and agrochemicals, but their asymmetric synthesis remains challenging. Although enantioselective oxidation is the most straightforward method to prepare chiral oxides with a higher oxidation state, asymmetric and even nonasymmetric amine oxidation to hydroxylamines has been poorly addressed. We report a titanium-catalyzed asymmetric oxidation of racemic amines providing a broad range of structurally diverse chiral hydroxylamines with excellent chemo- and enantioselectivity. Notably, hydroxylamines bearing diverse substituent patterns on the stereocenters, including α,α-ester-alkyl, α,α-amide-alkyl, α,α-aryl-alkyl, α,α-alkynyl-alkyl, and α,α-dialkyl, are well tolerated with good functional group compatibility. Catalyst turnover numbers up to 5000 and selectivity factors up to 278 are observed. This finding offers a democratized platform to chiral hydroxylamines as design elements for drug discovery and provides insights into metal-catalyzed asymmetric oxidation of challenging substrates.
RESUMO
Coal pyrolysis wastewater (CPW) contained all kinds of toxic and harmful components, which would seriously threaten the natural environment and human health. However, the traditional advanced oxidation processes frequently failed to remove phenolic substances. An A2BO4-type perovskite (La2CuO4) was successfully synthesized through sol-gel process and first applied in the treatment of CPW. More than 90% of 3, 5-dimethylphenol (DMP) was removed within 200 min at neutral conditions. Moreover, La2CuO4 also displayed excellent catalytic activity and stability in the actual CPW treatment process. Results demonstrated that DMP was removed through the attack of âOH, âO2- and 1O2 in La2CuO4/H2O2 system. The La2CuO4 were more favorable for H2O2 activation and have a lower adsorption energy than LaFeO3. XPS of fresh and spent La2CuO4 illustrated that the decomposition of hydrogen peroxide (H2O2) was mainly due to the redox cycle between surface copper and oxygen species. Moreover, the possible degradation pathway of DMP was deduced by identifying degradation products and analyzing density functional theory (DFT) calculations. This research provided a novel strategy for the development of perovskite-based catalytic materials on the treatment of practical CPW.
Assuntos
Peróxido de Hidrogênio , Águas Residuárias , Humanos , Carvão Mineral/análise , Cobre , Pirólise , Óxidos , OxirreduçãoRESUMO
Four new PKS-NRPS-derived macrolide lactams with three unique ring fusion types were discovered from the Arctic sponge associated actinomycete Streptomyces somaliensis 1107 using a genome mining strategy. Their structures were elucidated by a combination of MS, NMR spectroscopic analysis, and single-crystal X-ray diffraction. Biosynthetically, a novel gene cluster sml consisting of three polyketide synthases and one hybrid polyketide synthase-nonribosomal peptide synthetase together with cytochrome P450s and flavin-containing monooxygenases and oxidoreductases was demonstrated to assemble the unique skeleton. Pharmacological studies revealed that compound 1 displayed a potent anti-inflammatory effect without cytotoxicity. It inhibited IL-6 and TNF-α release in the serum of LPS-stimulated RAW264.7 macrophage cells with IC50 values of 5.76 and 0.18â µM, respectively, and modulated the MAPK pathway. Moreover, compound 1 alleviated LPS-induced systemic inflammation in our transgenic fluorescent zebrafish model.
Assuntos
Lactamas , Macrolídeos , Animais , Macrolídeos/farmacologia , Lactamas/farmacologia , Lipopolissacarídeos/farmacologia , Peixe-Zebra/metabolismo , Antibacterianos , Policetídeo Sintases/metabolismo , Anti-Inflamatórios/farmacologia , Peptídeo Sintases/metabolismo , Família MultigênicaRESUMO
The extensive use of antibiotics leads to the occurrences of antibiotic resistance genes (ARGs) in aquatic environment. As an emerging environmental pollutant, its pollution in aquatic environment has aroused widespread concern. However, the residues of antibiotics and antibiotic resistance genes in drinking water distribution system were barely reported up to now. Here, we studied the correlation and coordination between chlorine resistance mechanism and antibiotic resistance mechanism of chlorine-resistant bacteria. Antibiotics induce the resistance of chlorine-resistant bacteria (CRB) to NaClO, so that low-dose disinfectants can not inactivate CRB. We put forward a strategy to control the growth of CRB by controlling the concentration of biodegradable dissolved organic carbon (BDOC) in the front section of the water network. Moreover, We screened two strains of chlorine-resistant bacteria with different antibiotic resistance after mixed culture, the results showed that antibiotic resistance could spread horizontally among different kinds of bacteria. Then, the non-pathogenic bacteria can be used as a carrier, causing the pathogen to become resistant to antibiotic, and ultimately pose harm to human health. Generally, the antibiotic, antibiotic resistant genes, and the chlorine disinfectants added in water treatment plants will interact with bacteria in the water supply pipe network, which causes pollution to drinking water.
Assuntos
Desinfetantes , Água Potável , Purificação da Água , Antibacterianos/farmacologia , Bactérias/genética , Cloro/análise , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção , Resistência Microbiana a Medicamentos/genética , HumanosRESUMO
In this study, lignite activated coke (LAC) was used as the carrier for the first time, Fe3O4-CuO composite metal oxide was used as the main active material, and the nano-scale magnetic supported composite metal oxide Fe3O4-CuO@LAC catalyst was synthesized for the first time, which can effectively activate the active oxygen in peroxodisulfate (PS). XRD, FTIR, BET, SEM, XPS and other analysis results showed that there was particulate matter with spherical structure on the surface of the active coke, and its diffraction peaks matched well with the characteristic peaks of Fe3O4 and CuO, and it was a mesoporous structure with a specific surface area of 619.090 m2 g-1. By optimizing the experimental conditions, the results showed that more than 92% of hydroquinone can be removed under the conditions of hydroquinone concentration of 50 mg/L, pH = 5, adding 0.1 g/L catalyst and 3 mmol/L PS. EPR and quenching experiments proved that there were four reactive oxygen species in the reaction system ·OH, SO4-·, O2-· and 1O2. According to the degradation products of hydroquinone detected by LC-MS, the possible degradation path was deduced which laid a foundation for solving the problem of difficult treatment of phenol-containing wastewater in coal chemical industry.
Assuntos
Coque , Poluentes Químicos da Água , Indústria Química , Carvão Mineral/análise , Coque/análise , Cobre , Hidroquinonas/análise , Óxidos/análise , Fenóis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análiseRESUMO
In this study, we investigated using the main composition of pipe deposits from water distribution networks as catalyst to activate dual-oxidant H2O2/Na2S2O8 system to produce radicals for perchloroethylene and chloramphenicol removal. According to the results, the degradation efficiency of perchloroethylene by H2O2/Na2S2O8 system was 92.05% within 8 h. Due to the slow conversion between ≡Fe3+ and ≡Fe2+, the hydroxylamine was introduced to reduce reaction time. As for the results, the degradation efficiency of chloramphenicol in the H2O2/Na2S2O8 system with hydroxylamine assistance was 73.31% within 100 min. Meanwhile, several key affecting factors and the kinetic models were investigated. The primary radicals were identified by electron paramagnetic resonance and radical scavenging tests. Eleven degradation products were confirmed by high-resolution liquid chromatography-mass spectrometry. The result of this study provided the theoretical basis for resource utilization of pipe deposits in water treatment in case of emerging contamination events.
Assuntos
Poluentes Ambientais , Compostos de Ferro , Peróxido de Hidrogênio/química , Ferro/química , Abastecimento de ÁguaRESUMO
BACKGROUND Although influenza primarily affects the respiratory system, it can cause severe neurological complications, especially in younger children, but knowledge about the early indicators of acute necrotizing encephalopathy (ANE) is limited. The main purpose of this article is to summarize the clinical characteristics, diagnosis, and treatment of neurological complications of influenza in children, and to identify factors associated with ANE. MATERIAL AND METHODS This was a retrospective study of children with confirmed influenza with neurological complications treated between 01/2014 and 12/2019 at Guangzhou Women and Children's Medical Center. A receiver operating characteristics curve analysis was performed to determine the prognostic value of selected variables. RESULTS Sixty-three children with IAE (n=33) and ANE (n=30) were included. Compared with the IAE group, the ANE group showed higher proportions of fever and acute disturbance of consciousness, higher alanine aminotransferase, higher aspartate aminotransferase, higher creatinine kinase, higher procalcitonin, higher cerebrospinal fluid (CSF) protein, and lower CSF white blood cells (all P<0.05). The areas under the curve (AUCs) for procalcitonin and CSF proteins, used to differentiate IAE and ANE, were 0.790 and 0.736, respectively. The sensitivity and specificity of PCT >4.25 ng/ml to predict ANE were 73.3% and 100.0%, respectively. The sensitivity and specificity of CSF protein >0.48 g/L to predict ANE were 76.7% and 69.7%, respectively. Thirteen (43.3%) children with ANE and none with IAE died (P<0.0001). CONCLUSIONS High levels of CSF protein and serum procalcitonin might be used as early indicators for ANE. All children admitted with neurological findings, especially during the influenza season, should be evaluated for influenza-related neurological complications.
Assuntos
Encefalopatias/virologia , Influenza Humana/complicações , Encefalopatias/líquido cefalorraquidiano , Encefalopatias/diagnóstico por imagem , Lesões Encefálicas/epidemiologia , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Influenza Humana/líquido cefalorraquidiano , Influenza Humana/diagnóstico por imagem , Masculino , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Resultado do TratamentoRESUMO
BACKGROUND Influenza-associated acute necrotizing encephalopathy (IANE) can be lethal and disabling and have a sudden onset and deteriorate rapidly but lacks early diagnostic indicators. We aimed to examine the early clinical diagnostic indicators in children with IANE. MATERIAL AND METHODS Acute influenza patients were grouped according to their clinical manifestations: flu alone (FA), flu with febrile seizure (FS), influenza-associated encephalopathy (IAE), and IANE. The clinical features, biomarkers, neuroelectrophysiological results, and neuroimaging examination results were compared. RESULTS A total of 31 patients were included (FA (n=4), FS (n=8), IAE (n=14), and IANE (n=5)). The IANE group, whose mean age was 3.7 years, was more likely to show rapid-onset seizure, acute disturbance of consciousness (ADOC), Babinski's sign, and death/sequela. More patients in the IANE group required tracheal intubation mechanical ventilation and received intravenous immunoglobulins (IVIG) and glucocorticoids. The alanine aminotransferase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) levels in the IANE group were significantly higher than in the FS and IAE groups. The aquaporin-4 (AQP-4) antibody and malondialdehyde (MDA) levels in the serum and cerebrospinal fluid (CSF) were notably higher in IANE patients in the acute stage compared with FS and IAE patients. All patients in the IANE group had positive neuroimaging findings. CONCLUSIONS Early clinical warning factors for IANE include rapid-onset seizures in patients under 4 years of age, ADOC, and pathological signs. Increased AQP-4 antibodies and MDA levels in CSF might contribute to early diagnosis. Early magnetic resonance venography (MRV) and susceptibility-weighted imaging (SWI) sequences, or thrombelastography to identify deep vein thrombosis, might indicate clinical deterioration.
Assuntos
Encefalopatias/diagnóstico , Influenza Humana/diagnóstico , Doença Aguda , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Aquaporinas/sangue , Aquaporinas/metabolismo , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encefalopatias/sangue , Encefalopatias/metabolismo , Líquido Cefalorraquidiano/metabolismo , Pré-Escolar , Feminino , Glucocorticoides/sangue , Glucocorticoides/metabolismo , Humanos , Imunoglobulinas Intravenosas/sangue , Imunoglobulinas Intravenosas/metabolismo , Influenza Humana/sangue , Influenza Humana/metabolismo , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Neuroimagem/métodos , Convulsões/sangue , Convulsões/diagnóstico , Convulsões/metabolismoRESUMO
The coal pyrolysis wastewater (CPW) contributed to aquatic environment contamination with amount of aromatic pollutants, and the research on joint toxicity of the mixture of aromatic compounds was vital for environmental protection. By using Tetrahymena thermophile as non-target organism, the joint toxicity of typical nonpolar narcotics and polar narcotics in CPW was investigated. The results demonstrated that the nonpolar narcotics exerted chronic and reversible toxicity by hydrophobicity-based membrane perturbation, while polar narcotics performed acute toxicity by irreversible damage of cells. As the most hydrophobic nonpolar narcotics, indole and naphthalene caused the highest joint toxicity in 24 h with the lowest EC50mix (24.93 mg/L). For phenolic compounds, the combination of p-cresol and p-nitrophenol also showed the top toxicity (EC50mix = 10.9 mg/L) with relation to high hydrophobicity, and the joint toxicity was obviously stronger and more acute than that of nonpolar narcotics. Furthermore, by studying the joint toxicity of nonpolar narcotics and polar narcotics, the hydrophobicity-based membrane perturbation was the first step of toxicity effects, and afterwards the acute toxicity induced by electrophilic polar substituents of phenols dominated joint toxicity afterwards. This toxicity investigation was critical for understanding universal and specific effects of CPW to aquatic organisms.
Assuntos
Carvão Mineral , Pirólise , Tetrahymena/efeitos dos fármacos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Indóis/toxicidade , Naftalenos/toxicidade , Entorpecentes/toxicidade , Fenóis/toxicidadeRESUMO
BACKGROUND This study summarizes the characteristics of children screened for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and reports the case of 1 child who was diagnosed with SARS-CoV-2 infection in Guangzhou Women and Children's Medical Center and the cases of his family members. MATERIAL AND METHODS The medical records of 159 children who were admitted to our hospital from January 23 to March 20, 2020, were retrospectively analyzed. Samples from pharyngeal or/and anal swabs were subjected to reverse-transcription polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 within 12 h of patient admission; a second RT-PCR test was done 24 h after the first test. RESULTS Of the 159 patients, 151 patients had epidemiological histories, 14 patients had cluster onset, and 8 patients had no epidemiological history but had symptoms similar to coronavirus disease 2019 (COVID-19). The most common symptom was fever (n=125), followed by respiratory and gastrointestinal symptoms. A 7-year-old boy in a cluster family from Wuhan was confirmed with asymptomatic SARS-CoV-2 infection with ground-glass opacity shadows on his lung computed tomography scan, and his swab RT-PCR test had not turned negative until day 19 of his hospitalization. In patients who did not test positive for SARS-CoV-2, influenza, respiratory syncytial virus, and adenovirus were observed. A total of 158 patients recovered, were discharged, and experienced no abnormalities during follow-up. CONCLUSIONS For SARS-CoV-2 nosocomial infections, taking a "standard prevention & contact isolation & droplet isolation & air isolation" strategy can prevent infection effectively. Children with clustered disease need close monitoring.
Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19/métodos , Criança , Pré-Escolar , China/epidemiologia , Coronavirus/metabolismo , Coronavirus/patogenicidade , Infecção Hospitalar/epidemiologia , Feminino , Febre , Hospitalização , Hospitais , Humanos , Masculino , Prontuários Médicos , Alta do Paciente , Estudos Retrospectivos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidadeRESUMO
A simultaneous nitrification and denitrification (SND) bioaugmention system with Pseudomonas sp. HJ3 inoculated was established to explore the potential of simultaneous phenol and nitrogen removal in coal gasification wastewater (CGW). When the concentration of influent chemical oxygen demand (COD) and total phenols (TPh) was 1,765.94 ± 27.43 mg/L and 289.55 ± 10.32 mg/L, the average removal efficiency of COD and TPh at the stable operating stage reached 64.07% ± 0.76% and 74.91% ± 0.33%, respectively. Meanwhile, the average removal efficiency of NH4 +-N and total nitrogen (TN) reached 67.96% ± 0.17% and 57.95% ± 0.12%, respectively. The maximum SND efficiency reached 83.51%. Furthermore, SND bioaugmentation performed with good nitrification tolerance of phenol shock load and significantly reduced toxic inhibition of organisms. Additionally, the microbial community analysis indicated that Pseudomonas sp. HJ3 was the predominant bacterium in the SND bioaugmentation system. Moreover, the indigenous nitrogen removal bacteria such as Thauera, Acidovorax and Stenotrophomonas were enriched, which further enhanced the nitrogen removal in the SND bioaugmentation system. The results demonstrated the promising application of SND bioaugmentation for enhancing simultaneous phenol and nitrogen removal in CGW treatment.
Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos , Carvão Mineral , Nitrogênio , Fenol , Pseudomonas , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0â¯MPa to 2.5â¯MPa), the concentration (increasing from 10,000â¯mg/L to 25,000â¯mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry.
Assuntos
Carvão Mineral , Purificação da Água , Filtração , Membranas Artificiais , Nanotecnologia , SaisRESUMO
BACKGROUND: Enterovirus 71 (EV-A71) shows a potential of rapid death, but the natural history of the infection is poorly known. This study aimed to examine the natural history of EV-A71 infection. METHODS: This was a prospective longitudinal observational study performed between January 1st and October 31st, 2012, at three hospitals in Guangdong, China. Subjects with positive EV-A71 RNA laboratory test results were included. Disease progression was documented with MRI, autopsies, and follow-up. Symptoms/signs with potential association with risk of death were analyzed. RESULTS: Among the 288 patients, neurologic symptoms and signs were observed (emotional movement disorders, dyskinesia, involuntary movements, autonomic dysfunction, and disturbance of consciousness). Some of them occurred as initial symptoms. Myoclonic jerks/tremors were observed among >50% of the patients; nearly 40% of patients presented fatigue and 25% were with vomiting. Twenty-eight patients (9.7%) presented poor peripheral perfusion within 53.4 ± 26.1 h; 23 patients (8.0%) presented pulmonary edema and/or hemorrhage within 62.9 ± 28.6 h. Seventeen (5.9%) patients were in a coma. Seven (2.4%) patients died within 62.9 ± 28.6 h. Seventy-seven survivors underwent head and spinal cord MRI and 37.7% (29/77) showed abnormalities. Two fatal cases showed neuronal necrosis, softening, perivascular cuffing, colloid, and neuronophagia phenomenon in the brainstem. CONCLUSIONS: Patients with EV-A71 infection showed high complexity of symptoms and onset timing. Death risk may be indicated by autokinetic eyeball, eyeball ataxia, severe coma, respiratory rhythm abnormality, absent pharyngeal reflex, ultrahyperpyrexia, excessive tachycardia, pulmonary edema and/or hemorrhage, and refractory shock and ataxic respiration. Early assessment of these symptoms/signs is important for proper management.
Assuntos
Encefalite Viral/diagnóstico , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/virologia , Hemorragia/diagnóstico , Edema Pulmonar/diagnóstico , Transtornos Respiratórios/diagnóstico , Autopsia , Criança , Pré-Escolar , China/epidemiologia , Coma , Surtos de Doenças , Progressão da Doença , Encefalite Viral/mortalidade , Encefalite Viral/fisiopatologia , Enterovirus Humano A/isolamento & purificação , Infecções por Enterovirus/mortalidade , Infecções por Enterovirus/fisiopatologia , Feminino , Hemorragia/mortalidade , Hemorragia/fisiopatologia , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Edema Pulmonar/mortalidade , Edema Pulmonar/fisiopatologia , Transtornos Respiratórios/mortalidade , Transtornos Respiratórios/fisiopatologia , Taxa Respiratória/fisiologiaRESUMO
A highly effective naphthalene-degrading bacterial strain was isolated from acclimated activated sludge from a coal gasification wastewater plant, and identified as a Streptomyces sp., designated as strain QWE-35. The optimal pH and temperature for naphthalene degradation were 7.0 and 35°C. The presence of additional glucose and methanol significantly increased the degradation efficiency of naphthalene. The strain showed tolerance to the toxicity of naphthalene at a concentration as great as 200 mg/L. The Andrews mode could be fitted to the degradation kinetics data well over a wide range of initial naphthalene concentrations (10-200 mg/L), with kinetic values q max = 0.84 h(-1), K s = 40.39 mg/L, and K i = 193.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed for the first time. Strain QWE-35 was added into a membrane bioreactor (MBR) to enhance the treatment of real coal gasification wastewater. The results showed that the removal of chemical oxygen demand and total nitrogen were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of naphthalene was obtained in the bioaugmented reactor. The findings suggest a potential bioremediation role of Streptomyces sp. QWE-35 in the removal of naphthalene from wastewaters.
Assuntos
Reatores Biológicos , Naftalenos/metabolismo , Esgotos/microbiologia , Streptomyces/metabolismo , Águas Residuárias/química , Purificação da Água/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Carvão Mineral , Cinética , Naftalenos/análise , Nitrogênio/metabolismoRESUMO
An indigenous mixed culture of microorganisms, isolated from a full-scale coal gasification wastewater treatment plant, was used in degrading quinoline in presence of glucose as an alternative carbon source. The results showed that biodegradation kinetics of both quinoline and glucose could be described by first-order reaction kinetics model. It was also found that the biodegradation rate of quinoline was accelerated by the presence of glucose, while glucose degradation was inhibited by the presence of quinoline. Both the biomass yield coefficient and specific growth rate were increased with the increasing of the glucose concentrations in the dual substrates system. A sum kinetics model was used to describe the relative effects of the two substrates on their individual uptakes. The interaction parameter values indicated that quinoline exhibits stronger inhibition on glucose degradation. But for glucose, its effect on quinoline utilization was stimulative. Furthermore, the stimulation was positively correlated with the concentration of glucose in the system.
Assuntos
Glucose/metabolismo , Modelos Biológicos , Quinolinas/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Aerobiose , Biodegradação Ambiental , Biomassa , Cromatografia Líquida de Alta Pressão , Cinética , Poluentes Químicos da Água/análiseRESUMO
Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, stepwise multiple linear regression analysis method was applied to establish quantitative structure biodegradability relationship (QSBR) between the chemical structure and a novel biodegradation activity index (qmax) of 20 polycyclic aromatic hydrocarbons (PAHs). The frequency B3LYP/6-311+G(2df,p) calculations showed no imaginary values, implying that all the structures are minima on the potential energy surface. After eliminating the parameters which had low related coefficient with qmax, the major descriptors influencing the biodegradation activity were screened to be Freq, D, MR, EHOMO and ToIE. The evaluation of the developed QSBR mode, using a leave-one-out cross-validation procedure, showed that the relationships are significant and the model had good robustness and predictive ability. The results would be helpful for understanding the mechanisms governing biodegradation at the molecular level.
Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Relação Quantitativa Estrutura-Atividade , Biodegradação Ambiental , Monitoramento Ambiental , Modelos LinearesRESUMO
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.