Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 484: 116860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342444

RESUMO

Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.


Assuntos
Carpas , Dioxolanos , Praguicidas , Triazóis , Animais , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dinâmica Mitocondrial , Carpas/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Inflamação , Sistema Respiratório , Apoptose
2.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740228

RESUMO

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Assuntos
Anti-Helmínticos , Carpas , Ivermectina , Substâncias Protetoras , Silibina , Silibina/farmacologia , Silibina/uso terapêutico , Estresse do Retículo Endoplasmático , Cardiotoxicidade/tratamento farmacológico , Carpas/fisiologia , Animais , Ivermectina/toxicidade , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Fator de Transcrição CHOP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Biomarcadores/sangue , Coração/efeitos dos fármacos , Coração/fisiologia , Miocárdio/patologia
3.
Fish Shellfish Immunol ; 142: 109152, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821005

RESUMO

Abamectin (ABM) abuse contaminated aquatic environment and posed a potential threat to fish health as well as public safety. Silybin (SIL), a flavonoid, has been widely used as a novel feed additive to promote fish health. This research was to explore the potential antagonistic mechanism between ABM and SIL on brain and liver toxicity was investigated in common carp. Sixty carp were divided into four groups at random: the Control group, the SIL group, the ABM group, and ABM + SIL group. This experiment lasted for 30 d. According to behavioral observation, the detection of levels of acetylcholinesterase (AchE), iron, and mRNA expression levels of blood-brain barrier (BBB) related tight junction proteins (ZO-1, Claudin7, Occludin, MMP2, MMP9, and MMP13) in brain tissues, it was found that SIL relieved neurobehavioral disorders caused by ABM-induced BBB destruction in carp. H&E staining showed SIL mitigated nerve injury and liver injury caused by ABM. Oil Red O staining and liver-related parameters showed that SIL alleviated hepatotoxicity and lipid metabolism disorder caused by ABM exposure. Furthermore, this work also explored the specific molecular mechanism of SIL in liver protection and neuroprotection. It was shown that SIL lowered ROS levels in liver and brain tissues via the GSK-3ß/TSC2/TOR pathway. Simultaneously, SIL inhibited NF-κB signaling pathway and played an anti-inflammatory role. In conclusion, we believed that SIL supplementation has a protective effect on the brain and liver by regulating oxidative stress and inflammation.


Assuntos
Carpas , Animais , Silibina/farmacologia , Acetilcolinesterase , Glicogênio Sintase Quinase 3 beta , Fígado , Encéfalo
4.
Pestic Biochem Physiol ; 196: 105590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945241

RESUMO

The increasing concern over environmental pollution caused by the pesticide avermectin used in aquaculture has attracted significant attention. The use of avermectin, a neurotoxic pesticide, in aquatic environments leads to toxic effects on non-target organisms, particularly causing harm to fish. The phenolic compound ferulic acid possesses excellent anti-inflammatory and antioxidant capabilities. This study was conducted by establishing a chronic exposure experiment to avermectin, proposes the use of ferulic acid as a dietary additive to protect the carp brain from damage caused by exposure to avermectin. Furthermore, it investigates the anti-inflammatory and antioxidant effects of ferulic acid in the carp brain under chronic exposure to avermectin. The experimental results demonstrate that ferulic acid can alleviate brain tissue inflammation and oxidative stress by modulating the Nrf2/Keap1 and NF-κB signaling pathways. It protects the carp brain from chronic avermectin-induced damage, preserves the integrity of the carp blood-brain barrier, enhances the levels of feeding factors, and thereby alleviates carp growth inhibition. These findings provide new therapeutic strategies and a theoretical foundation for the sustainable development of carp aquaculture.


Assuntos
Carpas , Praguicidas , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Imunidade Inata , Carpas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Anti-Inflamatórios , Encéfalo/metabolismo , Proteínas de Peixes/metabolismo
5.
Toxicology ; 494: 153599, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499778

RESUMO

Indiscriminate use of pesticides not only leads to environmental pollution problems, but also causes poisoning of non-target organisms. Abamectin (ABM), a widely used insecticide worldwide, is of wide concern due to its persistence in the environment and its high toxicity to fish. The kidney, as a key organ for detoxification, is more susceptible to the effects of ABM. Unfortunately, few studies investigated the mechanisms behind this connection. In this study, carp was used as an indicator organism for toxicological studies to investigate renal damage caused by ABM residues in carp. In this work, carp were exposed to ABM (0, 3.005, and 12.02 µg/L) for 4 d and the nephrotoxicity was assessed. Histopathological findings revealed that ABM exposure induced kidney damage in carp, as well as an increase Creatinine and BUN levels. Meanwhile, ABM as a reactive oxygen species (ROS) stimulator, boosted ROS bursts and lowered antioxidant enzyme activity while activating the body's antioxidant system, the Nrf2-Keap1 signaling pathway. The accumulation of ROS can also lead to the imbalance of the body's oxidation system, leading to oxidative stress. At the same time, NF-κB signaling pathway associated with inflammation was activated, which regulated expression levels of inflammatory cytokines (TNF-α, IL-6, IL-1ß, and iNOS increased, while IL-10 and TGF-ß1 decreased). In addition, ABM exposure caused structural damage to kidney mitochondria of carp, resulting in decreased mitochondrial membrane potential and ATP production capacity, and mediated apoptosis through endogenous pathways Bax/Bcl-2/Caspase-9/Caspase-3. In conclusion, ABM caused kidney damage in carp by inducing oxidative stress, inflammation, and apoptosis through mitochondrial pathway. These findings will be useful for future research into molecular mechanisms of ABM-induced nephrotoxicity in aquatic organisms.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/farmacologia , Carpas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação/patologia , Apoptose , NF-kappa B/metabolismo , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA