Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36625162

RESUMO

Cell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking. To address this, we developed the image analysis pipeline 'GliaMorph'. GliaMorph is a modular analysis toolkit developed to perform (1) image pre-processing, (2) semi-automatic region-of-interest selection, (3) apicobasal texture analysis, (4) glia segmentation, and (5) cell feature quantification. Müller glia (MG) have a stereotypic shape linked to their maturation and physiological status. Here, we characterized MG on three levels: (1) global image-level, (2) apicobasal texture, and (3) regional apicobasal vertical-to-horizontal alignment. Using GliaMorph, we quantified MG development on a global and single-cell level, showing increased feature elaboration and subcellular morphological rearrangement in the zebrafish retina. As proof of principle, we analysed expression changes in a mouse glaucoma model, identifying subcellular protein localization changes in MG. Together, these data demonstrate that GliaMorph enables an in-depth understanding of MG morphology in the developing and diseased retina.


Assuntos
Células Ependimogliais , Peixe-Zebra , Animais , Camundongos , Retina/metabolismo , Neuroglia/metabolismo , Neurônios
2.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38658168

RESUMO

Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.


Assuntos
Proteína C9orf72 , Retina , Peixe-Zebra , Animais , Feminino , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Retina/metabolismo , Retina/patologia , Animais Geneticamente Modificados , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas/genética , Proteínas/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
3.
J Neurosci ; 42(4): 702-716, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34876467

RESUMO

The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.


Assuntos
Encéfalo/enzimologia , GTP Cicloidrolase/deficiência , Homeostase/fisiologia , Imunidade Inata/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/imunologia , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/imunologia , GTP Cicloidrolase/genética , Predisposição Genética para Doença/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Análise de Sequência de RNA/métodos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/genética , Peixe-Zebra
4.
J Neurosci Res ; 99(11): 2774-2792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520578

RESUMO

Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.


Assuntos
Oligodendroglia , Peixe-Zebra , Animais , Axônios/metabolismo , Feminino , Glutamatos/metabolismo , Masculino , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
5.
EMBO Rep ; 20(8): e47047, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31379129

RESUMO

We identify a novel endothelial membrane behaviour in transgenic zebrafish. Cerebral blood vessels extrude large transient spherical structures that persist for an average of 23 min before regressing into the parent vessel. We term these structures "kugeln", after the German for sphere. Kugeln are only observed arising from the cerebral vessels and are present as late as 28 days post fertilization. Kugeln do not communicate with the vessel lumen and can form in the absence of blood flow. They contain little or no cytoplasm, but the majority are highly positive for nitric oxide reactivity. Kugeln do not interact with brain lymphatic endothelial cells (BLECs) and can form in their absence, nor do they perform a scavenging role or interact with macrophages. Inhibition of actin polymerization, Myosin II, or Notch signalling reduces kugel formation, while inhibition of VEGF or Wnt dysregulation (either inhibition or activation) increases kugel formation. Kugeln represent a novel Notch-dependent NO-containing endothelial organelle restricted to the cerebral vessels, of currently unknown function.


Assuntos
Vasos Sanguíneos/citologia , Encéfalo/citologia , Células Endoteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica/genética , Peixe-Zebra/embriologia , Actinas/antagonistas & inibidores , Actinas/genética , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestrutura , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Circulação Cerebrovascular/genética , Embrião não Mamífero , Células Endoteliais/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Óxido Nítrico/metabolismo , Organelas/metabolismo , Organelas/ultraestrutura , Polimerização/efeitos dos fármacos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Tiazolidinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Glia ; 67(7): 1401-1411, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924555

RESUMO

Cell shape is critical for the proper function of every cell in every tissue in the body. This is especially true for the highly morphologically diverse neural and glia cells of the central nervous system. The molecular processes by which these, or indeed any, cells gain their particular cell-specific morphology remain largely unexplored. To identify the genes involved in the morphogenesis of the principal glial cell type in the vertebrate retina, the Müller glia (MG), we used genomic and CRISPR based strategies in zebrafish (Danio rerio). We identified 41 genes involved in various aspects of MG cell morphogenesis and revealed a striking concordance between the sequential steps of anatomical feature addition and the expression of cohorts of functionally related genes that regulate these steps. We noted that the many of the genes preferentially expressed in zebrafish MG showed conservation in glia across species suggesting evolutionarily conserved glial developmental pathways.


Assuntos
Células Ependimogliais/fisiologia , Perfilação da Expressão Gênica/métodos , Morfogênese/fisiologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Transcriptoma/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Peixe-Zebra
7.
PLoS Genet ; 12(4): e1005984, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27070787

RESUMO

The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central/embriologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação/genética , Comunicação Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Proliferação de Células/genética , Ciclina E/metabolismo , Drosophila/genética , Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Fatores de Transcrição , Transcrição Gênica/genética , Ativação Transcricional/genética
8.
Dev Biol ; 381(1): 276-85, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747543

RESUMO

During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Diencéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Interneurônios/metabolismo , Mutação , Fenótipo , Telencéfalo/metabolismo
9.
Aging Cell ; : e14192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742929

RESUMO

Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNAseq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in the ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterized, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNAseq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasizes the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.

10.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559206

RESUMO

Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNA-seq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterised, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNA-seq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasises the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.

11.
Development ; 137(18): 3089-97, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702565

RESUMO

Dlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (Gtf2i), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Polimorfismo de Nucleotídeo Único , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Animais , Sequência de Bases , Movimento Celular , Sequência Conservada , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Prosencéfalo/citologia , Alinhamento de Sequência , Transcrição Gênica
12.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643867

RESUMO

Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.


Assuntos
Fator de Transcrição PAX6 , Sequências Reguladoras de Ácido Nucleico , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Retina , Fator de Transcrição PAX6/genética , Proteínas de Peixe-Zebra/genética
13.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951087

RESUMO

Heterozygous variants in GBA1, encoding glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease (PD). Moreover, sporadic PD patients also have a substantial reduction of GCase activity. Genetic variants of SMPD1 are also overrepresented in PD cohorts, whereas a reduction of its encoded enzyme (acid sphingomyelinase or ASM) activity is linked to an earlier age of PD onset. Despite both converging on the ceramide pathway, how the combined deficiencies of both enzymes might interact to modulate PD has yet to be explored. Therefore, we created a double-knockout (DKO) zebrafish line for both gba1 (or gba) and smpd1 to test for an interaction in vivo, hypothesising an exacerbation of phenotypes in the DKO line compared to those for single mutants. Unexpectedly, DKO zebrafish maintained conventional swimming behaviour and had normalised neuronal gene expression signatures compared to those of single mutants. We further identified rescue of mitochondrial Complexes I and IV in DKO zebrafish. Despite having an unexpected rescue effect, our results confirm ASM as a modifier of GBA1 deficiency in vivo. Our study highlights the need for validating how genetic variants and enzymatic deficiencies may interact in vivo.


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Parkinson , Animais , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Doença de Parkinson/metabolismo , Fenótipo , alfa-Sinucleína/metabolismo , Mutação/genética
14.
Front Bioinform ; 22022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35600765

RESUMO

With an increase in subject knowledge expertise required to solve specific biological questions, experts from different fields need to collaborate to address increasingly complex issues. To successfully collaborate, everyone involved in the collaboration must take steps to "meet in the middle". We thus present a guide on truly cross-disciplinary work using bioimage analysis as a showcase, where it is required that the expertise of biologists, microscopists, data analysts, clinicians, engineers, and physicists meet. We discuss considerations and best practices from the perspective of both users and technology developers, while offering suggestions for working together productively and how this can be supported by institutes and funders. Although this guide uses bioimage analysis as an example, the guiding principles of these perspectives are widely applicable to other cross-disciplinary work.

15.
Aging Cell ; 21(4): e13597, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315590

RESUMO

Ageing is a significant risk factor for degeneration of the retina. Müller glia cells (MG) are key for neuronal regeneration, so harnessing the regenerative capacity of MG in the retina offers great promise for the treatment of age-associated blinding conditions. Yet, the impact of ageing on MG regenerative capacity is unclear. Here, we show that the zebrafish retina undergoes telomerase-independent, age-related neurodegeneration but that this is insufficient to stimulate MG proliferation and regeneration. Instead, age-related neurodegeneration is accompanied by MG morphological aberrations and loss of vision. Mechanistically, yes-associated protein (Yap), part of the Hippo signalling, has been shown to be critical for the regenerative response in the damaged retina, and we show that Yap expression levels decline with ageing. Despite this, morphologically and molecularly altered aged MG retain the capacity to regenerate neurons after acute light damage, therefore, highlighting key differences in the MG response to high-intensity acute damage versus chronic neuronal loss in the zebrafish retina.


Assuntos
Retina , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Células Ependimogliais , Neuroglia/metabolismo , Retina/metabolismo
16.
Dev Dyn ; 239(8): 2298-306, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658694

RESUMO

The Dlx genes encode a family of transcription factors important for the development of the vertebrate forebrain. These genes have very similar expression domains during the development of the telencephalon in mice and play a role in gamma-aminobutyric acid (GABAergic) interneuron differentiation. We have used triple fluorescent in situ hybridization to study the relative expression domains of the dlx and gad1 genes in the zebrafish telencephalon and diencephalon. We also generated transgenic zebrafish with regulatory elements from the zebrafish dlx1a/2a locus. The zebrafish dlx regulatory elements recapitulated dlx expression in the forebrain and mimicked the relationship between the expression of the dlx genes and gad1. Finally, we show that a putative enhancer located downstream of dlx2b can also activate reporter gene expression in a tissue-specific manner similar to endogenous dlx2b expression. Our results indicate the dlx genes are regulated by an evolutionarily conserved genetic pathway and may play a role in GABAergic interneuron differentiation in the zebrafish forebrain.


Assuntos
Glutamato Descarboxilase/análise , Proteínas de Homeodomínio/análise , Prosencéfalo/metabolismo , Fatores de Transcrição/análise , Animais , Diencéfalo/química , Hibridização in Situ Fluorescente , Interneurônios/citologia , Organismos Geneticamente Modificados , Prosencéfalo/crescimento & desenvolvimento , Telencéfalo/química , Peixe-Zebra , Ácido gama-Aminobutírico
17.
Front Cell Dev Biol ; 9: 732820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646826

RESUMO

The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the "neuro" and "vascular" components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a "glio-centric" view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.

18.
BMC Evol Biol ; 10: 157, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504318

RESUMO

BACKGROUND: The phylogenetic position of the elephant shark (Callorhinchus milii ) is particularly relevant to study the evolution of genes and gene regulation in vertebrates. Here we examine the evolution of Dlx homeobox gene regulation during vertebrate embryonic development with a particular focus on the forebrain. We first identified the elephant shark sequence orthologous to the URE2 cis -regulatory element of the mouse Dlx1/Dlx2 locus (herein named CmURE2). We then conducted a comparative study of the sequence and enhancer activity of CmURE2 with that of orthologous regulatory sequences from zebrafish and mouse. RESULTS: The CmURE2 sequence shows a high percentage of identity with its mouse and zebrafish counterparts but is overall more similar to mouse URE2 (MmURE2) than to zebrafish URE2 (DrURE2). In transgenic zebrafish and mouse embryos, CmURE2 displayed enhancer activity in the forebrain that overlapped with that of DrURE2 and MmURE2. However, we detected notable differences in the activity of the three sequences in the diencephalon. Outside of the forebrain, CmURE2 shows enhancer activity in areas such as the pharyngeal arches and dorsal root ganglia where its' counterparts are also active. CONCLUSIONS: Our transgenic assays show that part of the URE2 enhancer activity is conserved throughout jawed vertebrates but also that new characteristics have evolved in the different groups. Our study demonstrates that the elephant shark is a useful outgroup to study the evolution of regulatory mechanisms in vertebrates and to address how changes in the sequence of cis -regulatory elements translate into changes in their regulatory activity.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Prosencéfalo/embriologia , Tubarões/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Tubarões/embriologia , Peixe-Zebra/embriologia
19.
Front Cell Dev Biol ; 7: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805338

RESUMO

The zebrafish has emerged as an exciting vertebrate model to study different aspects of immune system development, particularly due to its transparent embryonic development, the availability of multiple fluorescent reporter lines, efficient genetic tools and live imaging capabilities. However, the study of immunity in zebrafish has largely been limited to early larval stages due to an incomplete knowledge of the full repertoire of immune cells and their specific markers, in particular, a lack of cell surface antibodies to detect and isolate such cells in living tissues. Here we focus on tissue resident or associated immunity beyond development, in the adult zebrafish. It is our view that, with our increasing knowledge and the development of improved tools and protocols, the adult zebrafish will be increasingly appreciated for offering valuable insights into the role of immunity in tissue repair and maintenance, in both health and disease throughout the lifecourse.

20.
Dis Model Mech ; 12(9)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31481433

RESUMO

Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood and currently no treatment exists to prevent these negative effects. We previously found that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish, and the ability of SNP to prevent these. We incubated 4-days post-fertilisation (dpf) zebrafish embryos in 20 mM glucose or mannitol for 5 days until 9 dpf, with or without 0.1 mM SNP co-treatment for 24 h (8-9 dpf), and quantified vascular NO reactivity, vascular mural cell number, expression of a klf2a reporter, glial fibrillary acidic protein (GFAP) and transient receptor potential cation channel subfamily V member 4 (TRPV4), as well as spontaneous neuronal activation at 9 dpf, all in the optic tectum. We also assessed the effect on light/dark preference and locomotory characteristics during free-swimming studies. We find that glucose exposure significantly reduced NO reactivity, klf2a reporter expression, vascular mural cell number and TRPV4 expression, while significantly increasing spontaneous neuronal activation and GFAP expression (all in the optic tectum). Furthermore, when we examined larval behaviour, we found that glucose exposure significantly altered light/dark preference and high and low speed locomotion while in light. Co-treatment with SNP reversed all these molecular and behavioural effects of glucose exposure. Our findings comprehensively describe the negative effects of glucose exposure on the vascular anatomy, molecular phenotype and function of the optic tectum, and on whole-organism behaviour. We also show that SNP or other NO donors may represent a therapeutic strategy to ameliorate the complications of diabetes on the neurovascular unit.This article has an associated First Person interview with the first author of the paper.


Assuntos
Comportamento Animal , Encéfalo/irrigação sanguínea , Glucose/toxicidade , Nitroprussiato/farmacologia , Peixe-Zebra/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Larva/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Manitol/farmacologia , Modelos Biológicos , Óxido Nítrico/metabolismo , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/metabolismo , Canais de Cátion TRPV/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA