Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Pathog ; 19(3): e1011192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888688

RESUMO

Progression of tuberculosis is tightly linked to a disordered immune balance, resulting in inability of the host to restrict intracellular bacterial replication and its subsequent dissemination. The immune response is mainly characterized by an orchestrated recruitment of inflammatory cells secreting cytokines. This response results from the activation of innate immunity receptors that trigger downstream intracellular signaling pathways involving adaptor proteins such as the TIR-containing adaptor protein (Tirap). In humans, resistance to tuberculosis is associated with a loss-of-function in Tirap. Here, we explore how genetic deficiency in Tirap impacts resistance to Mycobacterium tuberculosis (Mtb) infection in a mouse model and ex vivo. Interestingly, compared to wild type littermates, Tirap heterozygous mice were more resistant to Mtb infection. Upon investigation at the cellular level, we observed that mycobacteria were not able to replicate in Tirap-deficient macrophages compared to wild type counterparts. We next showed that Mtb infection induced Tirap expression which prevented phagosomal acidification and rupture. We further demonstrate that the Tirap-mediated anti-tuberculosis effect occurs through a Cish-dependent signaling pathway. Our findings provide new molecular evidence about how Mtb manipulates innate immune signaling to enable intracellular replication and survival of the pathogen, thus paving the way for host-directed approaches to treat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo
2.
PLoS Pathog ; 18(5): e1010498, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587469

RESUMO

Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Clorobenzenos , Chlorocebus aethiops , Cresóis , Humanos , Pulmão , Camundongos , Células Vero
3.
PLoS Pathog ; 17(9): e1009887, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34525130

RESUMO

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


Assuntos
Brucelose/imunologia , Carboxiliases/imunologia , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Animais , Isocitrato Liase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 117(42): 26374-26381, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020286

RESUMO

Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.


Assuntos
Brucella/genética , Brucella/metabolismo , Via de Pentose Fosfato/genética , Adaptação Biológica/genética , Animais , Zoonoses Bacterianas/genética , Evolução Biológica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Via de Pentose Fosfato/fisiologia , Fenótipo , Virulência
5.
Org Biomol Chem ; 17(20): 5129-5137, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31073555

RESUMO

Ethionamide (ETH) is one of the most widely used second-line chemotherapeutic drugs for the treatment of multi-drug-resistant tuberculosis. The bioactivation and activity of ETH is dramatically potentiated by a family of molecules called "boosters" among which BDM43266 is one of the most potent. However, the co-administration of these active molecules is hampered by their low solubility in biological media and by the strong tendency of ETH to crystallize. A novel strategy that involves synthesizing a codrug able to self-associate into nanoparticles prone to be taken up by infected macrophages is proposed here. This codrug is designed by tethering N-hydroxymethyl derivatives of both ETH and its booster through a glutaric linker. This codrug self-assembles into nanoparticles of around 200 nm, stable upon extreme dilution without disaggregating as well as upon concentration. The nanoparticles of the codrug can be intranasally administered overcoming the unfavorable physico-chemical profiles of the parent drugs. Intrapulmonary delivery of the codrug nanoparticles to Mtb infected mice via the intranasal route at days 7, 9, 11, 14, 16 and 18 post-infection reduces the bacterial load in the lungs by a factor of 6.

6.
J Immunol ; 196(9): 3780-93, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036913

RESUMO

The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-ß deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/ß(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella.


Assuntos
Brucella melitensis/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon gama/metabolismo , Seios Paranasais/microbiologia , Receptores de Interleucina-17/metabolismo , Animais , Células Cultivadas , Imunidade nas Mucosas , Memória Imunológica , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-17/genética , Transdução de Sinais
7.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808159

RESUMO

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Assuntos
Brucelose/imunologia , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Macrófagos/imunologia , Receptores de Interferon/imunologia , Baço/imunologia , Animais , Antibacterianos/farmacologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Brucella abortus/efeitos dos fármacos , Brucella abortus/imunologia , Brucella abortus/patogenicidade , Brucella melitensis/efeitos dos fármacos , Brucella melitensis/imunologia , Brucella melitensis/patogenicidade , Brucella suis/efeitos dos fármacos , Brucella suis/imunologia , Brucella suis/patogenicidade , Brucelose/tratamento farmacológico , Brucelose/genética , Brucelose/microbiologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Quimiocina CCL21/genética , Quimiocina CCL21/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Doença Crônica , Regulação da Expressão Gênica , Interferon gama/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Rifampina/farmacologia , Transdução de Sinais , Baço/microbiologia , Estreptomicina/farmacologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Receptor de Interferon gama
8.
Infect Immun ; 82(9): 3927-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001604

RESUMO

Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.


Assuntos
Brucella melitensis/imunologia , Eritrócitos/imunologia , Animais , Sistemas de Secreção Bacterianos/imunologia , Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Eritrócitos/microbiologia , Flagelos/imunologia , Flagelos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
PLoS Pathog ; 8(3): e1002575, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479178

RESUMO

Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b⁺ F4/80⁺ MHC-II⁺ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS⁺ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.


Assuntos
Brucella/imunologia , Brucelose/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Pneumopatias/imunologia , Animais , Biomarcadores/metabolismo , Brucella/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Separação Celular , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Baço/imunologia , Baço/microbiologia , Baço/patologia
10.
J Med Chem ; 66(16): 11056-11077, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485869

RESUMO

Mycobacterium tuberculosis (Mtb) drug resistance poses an alarming threat to global tuberculosis control. We previously reported that C10, a ring-fused thiazolo-2-pyridone, inhibits Mtb respiration, blocks biofilm formation, and restores the activity of the antibiotic isoniazid (INH) in INH-resistant Mtb isolates. This discovery revealed a new strategy to address INH resistance. Expanding upon this strategy, we identified C10 analogues with improved potency and drug-like properties. By exploring three heterocycle spacers (oxadiazole, 1,2,3-triazole, and isoxazole) on the ring-fused thiazolo-2-pyridone scaffold, we identified two novel isoxazoles, 17h and 17j. 17h and 17j inhibited Mtb respiration and biofilm formation more potently with a broader therapeutic window, were better potentiators of INH-mediated inhibition of an INH-resistant Mtb mutant, and more effectively inhibited intracellular Mtb replication than C10. The (-)17j enantiomer showed further enhanced activity compared to its enantiomer and the 17j racemic mixture. Our potent second-generation C10 analogues offer promise for therapeutic development against drug-resistant Mtb.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias
11.
Nat Aging ; 3(7): 829-845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414987

RESUMO

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection. Relative to young hamsters, aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Early treatment with ABT-263 lowered pulmonary viral load in aged (but not young) animals, an effect associated with lower expression of ACE2, the receptor for SARS-CoV-2. ABT-263 treatment also led to lower pulmonary and systemic levels of senescence-associated secretory phenotype factors and to amelioration of early and late lung disease. These data demonstrate the causative role of age-associated pre-existing senescent cells on COVID-19 severity and have clear clinical relevance.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Carga Viral , Pulmão , Mesocricetus , Inflamação , Senescência Celular
12.
Gut Microbes ; 14(1): 2100200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830432

RESUMO

Obese patientss with nonalcoholic steatohepatitis (NASH) are particularly prone to developing severe forms of coronavirus disease 19 (COVID-19). The gut-to-lung axis is critical during viral infections of the respiratory tract, and a change in the gut microbiota's composition might have a critical role in disease severity. Here, we investigated the consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the gut microbiota in the context of obesity and NASH. To this end, we set up a nutritional model of obesity with dyslipidemia and NASH in the golden hamster, a relevant preclinical model of COVID-19. Relative to lean non-NASH controls, obese NASH hamsters develop severe inflammation of the lungs and liver. 16S rRNA gene profiling showed that depending on the diet, SARS-CoV-2 infection induced various changes in the gut microbiota's composition. Changes were more prominent and transient at day 4 post-infection in lean animals, alterations still persisted at day 10 in obese NASH animals. A targeted, quantitative metabolomic analysis revealed changes in the gut microbiota's metabolic output, some of which were diet-specific and regulated over time. Our results showed that specifically diet-associated taxa are correlated with disease parameters. Correlations between infection variables and diet-associated taxa highlighted a number of potentially protective or harmful bacteria in SARS-CoV-2-infected hamsters. In particular, some taxa in obese NASH hamsters (e.g. Blautia and Peptococcus) were associated with pro-inflammatory parameters in both the lungs and the liver. These taxon profiles and their association with specific disease markers suggest that microbial patterns might influence COVID-19 outcomes.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Cricetinae , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/complicações , Obesidade/microbiologia , RNA Ribossômico 16S/genética , SARS-CoV-2
13.
Viruses ; 14(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146875

RESUMO

Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II-a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.


Assuntos
COVID-19 , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/complicações , Cricetinae , Citocinas , Dieta , Modelos Animais de Doenças , Humanos , Inflamação , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , SARS-CoV-2
14.
Gut Microbes ; 14(1): 2018900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965194

RESUMO

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Assuntos
COVID-19/microbiologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Mesocricetus , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , COVID-19/patologia , Cricetinae , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Tratamento Farmacológico da COVID-19
15.
iScience ; 25(7): 104537, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35769882

RESUMO

The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.

16.
Int J Pharm ; 610: 121202, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666144

RESUMO

Poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) are among the most employed (co)polymers for the preparation of drug nanocarriers for the treatment of cancer and infectious diseases. Before considering any clinical use, it is necessary to understand the interactions between polymeric nanoparticles (NPs) and their physiological environment, especially immune cells. Here, we propose a simple, yet precise method to assess NPs internalization kinetics in macrophages, based on the direct analysis of the cell culture media after different incubation times. The proof of concept is given here by using fluorescent PLGA NPs. Nanoparticle tracking analysis (NTA) was a method of choice, enabling detecting each individual NP and analyzing its trajectory while in Brownian motion. As compared to dynamic light scattering (DLS), NTA enabled a more precise determination of NP size distribution. The uptake process was rapid: in one hour, around a third of the NPs were internalized. In addition, the internalized NPs were visualized by confocal microscopy. The fluorescent cellular stacks were analyzed using a freely available macro for ImageJ software, Particle_In_Cell-3D. The internalized objects were localized and counted. This methodology could serve for further studies while analyzing the effects of NPs size, shape and surface properties on their interaction with various cell lines.


Assuntos
Nanopartículas , Ácido Poliglicólico , Técnicas de Cultura de Células , Portadores de Fármacos , Ácido Láctico , Macrófagos , Tamanho da Partícula
17.
Methods Mol Biol ; 2314: 649-702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235675

RESUMO

Mycobacterium tuberculosis is able to colonize, persist, and massively replicate in host cells, such as phagocytes and epithelial cells. The intracellular stage of the bacteria is critical to the development of tuberculosis pathogenesis. The detailed mechanisms of intracellular trafficking of the bacillus are not fully understood and require further investigations. Therefore, increasing the knowledge of this process will help to develop therapeutic tools that will lower the burden of tuberculosis. M. tuberculosis is genetically tractable and tolerates the expression of heterologous fluorescent proteins. Thus, the intracellular distribution of the bacteria expressing fluorescent tracers can be easily defined using confocal microscopy. Advances in imaging techniques and images-based analysis allow the rapid quantification of biological objects in complex environments. In this chapter, we detailed high-content / high-throughput imaging methods to track the bacillus within host cell settings.


Assuntos
Células Dendríticas/microbiologia , Células Epiteliais/microbiologia , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagócitos/microbiologia , Tuberculose/microbiologia , Animais , Células Dendríticas/metabolismo , Testes Diagnósticos de Rotina , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Fagócitos/metabolismo , Espécies Reativas de Oxigênio , Tuberculose/metabolismo
18.
Gut Microbes ; 13(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33685349

RESUMO

The current pandemic of coronavirus disease (COVID) 2019 constitutes a global public health issue. Regarding the emerging importance of the gut-lung axis in viral respiratory infections, analysis of the gut microbiota's composition and functional activity during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be instrumental in understanding and controling COVID 19. We used a nonhuman primate model (the macaque), that recapitulates mild COVID-19 symptoms, to analyze the effects of a SARS-CoV-2 infection on dynamic changes of the gut microbiota. 16S rRNA gene profiling and analysis of ß diversity indicated significant changes in the composition of the gut microbiota with a peak at 10-13 days post-infection (dpi). Analysis of bacterial abundance correlation networks confirmed disruption of the bacterial community at 10-13 dpi. Some alterations in microbiota persisted after the resolution of the infection until day 26. Some changes in the relative bacterial taxon abundance associated with infectious parameters. Interestingly, the relative abundance of Acinetobacter (Proteobacteria) and some genera of the Ruminococcaceae family (Firmicutes) was positively correlated with the presence of SARS-CoV-2 in the upper respiratory tract. Targeted quantitative metabolomics indicated a drop in short-chain fatty acids (SCFAs) and changes in several bile acids and tryptophan metabolites in infected animals. The relative abundance of several taxa known to be SCFA producers (mostly from the Ruminococcaceae family) was negatively correlated with systemic inflammatory markers while the opposite correlation was seen with several members of the genus Streptococcus. Collectively, SARS-CoV-2 infection in a nonhuman primate is associated with changes in the gut microbiota's composition and functional activity.


Assuntos
COVID-19/microbiologia , Microbioma Gastrointestinal , Macaca/microbiologia , Macaca/virologia , Animais , Bactérias/classificação , Modelos Animais de Doenças , Fezes , Feminino , Metaboloma , RNA Ribossômico 16S/genética
19.
Front Immunol ; 11: 569127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072109

RESUMO

Toll-like receptors (TLRs) are at the forefront of pathogen recognition ensuring host fitness and eliciting protective cellular and humoral responses. Signaling pathways downstream of TLRs are tightly regulated for preventing collateral damage and loss of tolerance toward commensals. To trigger effective intracellular signaling, these receptors require the involvement of adaptor proteins. Among these, Toll/Interleukin-1 receptor domain containing adaptor protein (Tirap or MAL) plays an important role in establishing immune responses. Loss of function of MAL was associated with either disease susceptibility or resistance. These opposite effects reveal paradoxical functions of MAL and their importance in containing infectious or non-infectious diseases. In this review, we summarize the current knowledge on the signaling pathways involving MAL in different pathologies and their impact on inducing protective or non-protective responses.


Assuntos
Suscetibilidade a Doenças , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Imunomodulação , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ligação Proteica , Proteólise , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Relação Estrutura-Atividade , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
20.
ACS Infect Dis ; 6(3): 366-378, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32011115

RESUMO

Killing more than one million people each year, tuberculosis remains the leading cause of death from a single infectious agent. The growing threat of multidrug-resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. EthR, a mycobacterial transcriptional regulator, is involved in the control of the bioactivation of the second-line drug ethionamide. We have previously reported the discovery of in vitro nanomolar boosters of ethionamide through fragment-based approaches. In this study, we have further explored the structure-activity and structure-property relationships in this chemical family. By combining structure-based drug design and in vitro evaluation of the compounds, we identified a new oxadiazole compound as the first fragment-based ethionamide booster which proved to be active in vivo, in an acute model of tuberculosis infection.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Etionamida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Animais , Antituberculosos/química , Cristalografia por Raios X , Descoberta de Drogas , Etionamida/química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/química , Oxidiazóis/isolamento & purificação , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA