Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neural Transm (Vienna) ; 131(5): 505-508, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38233662

RESUMO

Addictions comprises heterogenous psychiatric conditions caused by the complex interaction of genetic, neurobiological, psychological, and environmental factors with a chronic relapsing-remitting pattern. Despite the long-standing efforts of preclinical and clinical research studies, addiction field has seen relatively slow progress when it comes to the development of new therapeutic interventions, most of which failed to demonstrate a significant efficacy. This is likely due to the very complex interplay of many factors that contribute to both the development and expression of addictions. The imbalance between the salience and the reward brain network circuitry has been proposed as the neurobiological mechanisms explaining the pathognomonic symptoms of addictions.Non-invasive neuromodulation techniques have been proposed as a promising therapeutic intervention to restore these brain circuits dysfunctions. Here, we propose a multi-level strategy to innovate the diagnosis and the treatment of addictive disorders.


Assuntos
Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Transtornos Relacionados ao Uso de Substâncias/terapia , Comportamento Aditivo/terapia , Comportamento Aditivo/fisiopatologia , Encéfalo/fisiopatologia
2.
Mov Disord ; 38(7): 1127-1142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156737

RESUMO

BACKGROUND: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Síndrome , Biomarcadores , Previsões , Sistema Nervoso Central/patologia
3.
Ther Drug Monit ; 44(4): 494-510, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149665

RESUMO

BACKGROUND: Synthetic benzimidazole opioids (BOs) are highly potent µ-opioid receptor agonists with heroin-like effects. Isotonitazene was first available in 2019 in the drug market, although new analogs have multiplied recently. The authors aimed to identify BO use trends and gather toxicological data from BO-related cases to assist in clinical and forensic investigations. METHODS: A systematic literature search was conducted according to the PRISMA guidelines. PubMed and Scopus databases were accessed in October 2021 to identify scientific reports of BO-related intoxication and fatalities. Publication dates, case descriptions, symptoms, autopsy findings, and concentrations of BOs and metabolites in biological matrices were compiled. RESULTS: Data from 8 case reports with 93 fatalities involving isotonitazene ( n = 65), metonitazene ( n = 20), etonitazepyne ( N -pyrrolidino etonitazene) ( n = 8), flunitazene ( n = 4), and/or butonitazene ( n = 1), and 1 acute intoxication involving etonitazepyne were collected. Autopsy findings included pulmonary congestion/high lung weight (66%), cardiomegaly/high cardiac weight (39%), cerebral edema (22%), gastric contents in the airways (22%), and organ congestion (22%). Median peripheral blood concentrations were 1.7 ng/mL for isotonitazene (0.4-9.5 ng/mL, n = 13), 5.4 ng/mL for metonitazene (0.52-33 ng/mL, n = 17), 5.4 ng/mL for etonitazepyne (2.4-8.3 ng/mL, n = 2), 1.3 ng/mL for flunitazene (0.58-2.1 ng/mL, n = 2), and 3.2 ng/mL for butonitazene ( n = 1). Central nervous system depressants were almost always coadministered. CONCLUSIONS: Isotonitazene was predominant in cases from 2019 to mid-2020 and was replaced by metonitazene after scheduling in the United States. Typical findings on opioid overdoses have been reported. Peripheral blood concentrations were consistent with a potency similar to that of fentanyl. These results must be interpreted carefully, considering the scarcity of reports on BO-related cases and drug co-exposures.


Assuntos
Analgésicos Opioides , Fentanila , Benzimidazóis/efeitos adversos , Causas de Morte , Heroína , Humanos
4.
Proc Natl Acad Sci U S A ; 115(49): E11532-E11541, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442663

RESUMO

A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Intoxicação por MPTP , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
5.
BMC Psychiatry ; 20(1): 153, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252720

RESUMO

BACKGROUND: Sleep disturbance is a prominent and common complaint in people with cocaine use disorder (CUD), either during intake or withdrawal. Repetitive transcranial magnetic stimulation (rTMS) has shown promise as a treatment for CUD. Thus, we evaluated the relationship between self-perceived sleep quality and cocaine use pattern variables in outpatients with CUD undergoing an rTMS protocol targeted at the left dorsolateral prefrontal cortex. METHODS: This is a retrospective observational study including 87 patients diagnosed with CUD according to the DSM-5 criteria. Scores in Pittsburgh Sleep Quality Index (PSQI), Cocaine Craving Questionnaire (CCQ), Beck Depression Inventory-II (BDI-II), Self-rating Anxiety Scale (SAS), and Symptoms checklist 90-Revised (outcome used: Global Severity Index, GSI) were recorded at baseline, and after 5, 30, 60, and 90 days of rTMS treatment. Cocaine use was assessed by self-report and regular urine screens. RESULTS: Sleep disturbances (PSQI scores > 5) were common in patients at baseline (mean ± SD; PSQI score baseline: 9.24 ± 3.89; PSQI > 5 in 88.5% of patients). PSQI scores significantly improved after rTMS treatment (PSQI score Day 90: 6.12 ± 3.32). Significant and consistent improvements were also seen in craving and in negative-affect symptoms compared to baseline. Considering the lack of a control group, in order to help the conceptualization of the outcomes, we compared the results to a wait-list group (n = 10). No significant improvements were observed in the wait-list group in any of the outcome measures. CONCLUSIONS: The present findings support the therapeutic role of rTMS interventions for reducing cocaine use and accompanying symptoms such as sleep disturbance and negative-affect symptoms. TRIAL REGISTRATION: ClinicalTrials.gov.NCT03733821.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/terapia , Cocaína/efeitos adversos , Sono/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Cocaína/administração & dosagem , Fissura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal , Estudos Retrospectivos , Inquéritos e Questionários , Resultado do Tratamento
6.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336695

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson's disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


Assuntos
Caspase 3/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática , Genótipo , Ácido Glutâmico/metabolismo , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Quinases/metabolismo
7.
Mov Disord ; 31(6): 802-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27193205

RESUMO

The appearance of motor manifestations in Parkinson's disease (PD) is invariably linked to degeneration of nigral dopaminergic neurons of the substantia nigra pars compacta. Traditional views on PD neuropathology have been grounded in the assumption that the prime event of neurodegeneration involves neuronal cell bodies with the accumulation of metabolic products. However, this view has recently been challenged by both clinical and experimental evidence. Neuropathological studies in human brain samples and both in vivo and in vitro models support the hypothesis that nigrostriatal synapses may indeed be affected at the earliest stages of the neurodegenerative process. The mechanisms leading to either structural or functional synaptic dysfunction are starting to be elucidated and include dysregulation of axonal transport, impairment of the exocytosis and endocytosis machinery, altered intracellular trafficking, and loss of corticostriatal synaptic plasticity. The aim of this review is to try to integrate different lines of evidence from both pathogenic and genetic animal models that, to different extents, suggest that early synaptic impairment may represent the key event in PD pathogenesis. Understanding the molecular and cellular events underlying such synaptopathy is a fundamental step toward developing specific biomarkers of early dopaminergic dysfunction and, more importantly, designing novel therapies targeting the synaptic apparatus of selective, vulnerable synapses. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson , Sinapses , Animais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinapses/metabolismo , Sinapses/patologia , Sinapses/fisiologia
8.
Mov Disord ; 29(13): 1655-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25195914

RESUMO

Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.


Assuntos
Antagonistas Colinérgicos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Chaperonas Moleculares/genética , Sinapses/efeitos dos fármacos , Animais , Biofísica , Corpo Estriado/citologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Sinapses/genética , Tálamo/citologia
9.
Mov Disord ; 29(1): 41-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24167038

RESUMO

Homozygous or compound heterozygous mutations in the phosphatase and tensin homolog-induced putative kinase 1 (PINK1) gene are causative of autosomal recessive, early onset Parkinson's disease. Single heterozygous mutations have been detected repeatedly both in a subset of patients and in unaffected individuals, and the significance of these mutations has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have demonstrated the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. We performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-) ) mice using a multidisciplinary approach and observed that, despite normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, a significantly lower dopamine release was measured in the striatum of PINK1(+/-) mice compared with control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored normal LTP in heterozygous mice. Moreover, monoamine oxidase B inhibitors rescued physiological LTP and normal dopamine release. Our results provide novel evidence for striatal plasticity abnormalities, even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of Parkinson's disease and a valid tool with which to characterize early disease stage and design possible disease-modifying therapies.


Assuntos
Dopamina/metabolismo , Atividade Motora/genética , Plasticidade Neuronal/genética , Proteínas Quinases/genética , Sinapses/genética , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases/metabolismo , Receptores Dopaminérgicos/metabolismo , Teste de Desempenho do Rota-Rod , Substância Negra/metabolismo
10.
J Neurosci ; 32(35): 11991-2004, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22933784

RESUMO

Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M(1) and M(2) muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M(1) muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time window for synaptic integration between thalamostriatal and corticostriatal inputs, which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements.


Assuntos
Neurônios Colinérgicos/patologia , Corpo Estriado/fisiologia , Distonia/genética , Chaperonas Moleculares/genética , Sinapses/patologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Distonia/fisiopatologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Vias Neurais/patologia , Fatores de Tempo
11.
Curr Neuropharmacol ; 21(11): 2323-2342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36946485

RESUMO

BACKGROUND: Compelling evidence from preclinical and clinical studies supports the therapeutic role of cannabidiol (CBD) in several medical disorders. We reviewed the scientific evidence on CBD-related toxicity and adverse events (AEs) in 2019, at the beginning of the spike in clinical studies involving CBD. However, CBD safety remained uncertain. OBJECTIVE: With the benefit of hindsight, we aimed to provide an update on CBD-related toxicity and AEs in humans. METHODS: A systematic literature search was conducted following PRISMA guidelines. PubMed, Cochrane, and Embase were accessed in October 2022 to identify clinical studies mentioning CBDrelated toxicity/AEs from February 2019 to September 2022. Study design, population characteristics, CBD doses, treatment duration, co-medications, and AEs were compiled. RESULTS: A total of 51 reports were included. Most studies investigated CBD efficacy and safety in neurological conditions, such as treatment-resistant epilepsies, although a growing number of studies are focusing on specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Most studies report mild or moderate severity of AEs. The most common AEs are diarrhea, somnolence, sedation, and upper respiratory disturbances. Few serious AEs have been reported, especially when CBD is co-administered with other classes of drugs, such as clobazam and valproate. CONCLUSION: Clinical data suggest that CBD is well tolerated and associated with few serious AEs at therapeutic doses both in children and adults. However, interactions with other medications should be monitored carefully. Additional data are needed to investigate CBD's long-term efficacy and safety, and CBD use in medical conditions other than epilepsy syndromes.


Assuntos
Canabidiol , Epilepsia , Criança , Adulto , Humanos , Canabidiol/efeitos adversos , Epilepsia/tratamento farmacológico , Ansiedade , Anticonvulsivantes/efeitos adversos
12.
Brain Sci ; 12(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741630

RESUMO

The involvement of the dopamine system in modulating time perception has been widely reported. Clinical conditions (e.g., Parkinson's disease, addictions) that alter dopaminergic signaling have been shown to affect motor timing and perceived duration. The present study aimed at investigating whether the effects of chronic stimulant use on temporal processing are time-interval dependent. All participants performed two different time bisection tasks (480/1920 ms and 1200/2640 ms) in which we analysed the proportion of long responses for each stimulus duration as well as an index of perceived duration and one of sensitivity. Regarding the proportion of long responses, we found no differences between groups in either time bisection task but patients had more variable results than controls did in both tasks. This study provides new insight into temporal processing in stimulant-dependent patients. Regardless of the time interval tested, the results showed comparable temporal ability in patients and controls, but higher temporal variability in patients. This finding is consistent with impairment of frontally-mediated cognitive functions involved in time perception rather than impairment in time processing per se.

13.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054363

RESUMO

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

14.
Mov Disord ; 26(2): 216-22, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21412829

RESUMO

Endocannabinoids (eCBs) are endogenous lipids that bind principally type-1 and type-2 cannabinoid (CB(1) and CB(2)) receptors. N-Arachidonoylethanolamine (AEA, anandamide) and 2-arachidonoylglycerol (2-AG) are the best characterized eCBs that are released from membrane phospholipid precursors through multiple biosynthetic pathways. Together with their receptors and metabolic enzymes, eCBs form the so-called "eCB system". The later has been involved in a wide variety of actions, including modulation of basal ganglia function. Consistently, both eCB levels and CB(1) receptor expression are high in several basal ganglia regions, and more specifically in the striatum and in its target projection areas. In these regions, the eCB system establishes a close functional interaction with dopaminergic neurotransmission, supporting a relevant role for eCBs in the control of voluntary movements. Accordingly, compelling experimental and clinical evidence suggests that a profound rearrangement of the eCB system in the basal ganglia follows dopamine depletion, as it occurs in Parkinson's disease (PD). In this article, we provide a brief survey of the evidence that the eCB system changes in both animal models of, and patients suffering from, PD. A striking convergence of findings is observed between both rodent and primate models and PD patients, indicating that the eCB system undergoes dynamic, adaptive changes, aimed at restoring an apparent homeostasis within the basal ganglia network.


Assuntos
Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Doença de Parkinson/metabolismo , Animais , Humanos , Receptores de Canabinoides/metabolismo
15.
Front Psychiatry ; 12: 659527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841218

RESUMO

Background: Adult attention-deficit/hyperactivity disorder (ADHD) is associated with high comorbidity with other psychiatric diseases, including cocaine use disorder (CocUD). Given the common fronto-striatal dysfunction, ADHD patients often use cocaine as self-medication for ameliorating symptoms by increasing striatal dopamine release. Yet, comorbidity with ADHD is related to poor treatment outcomes. CocUD has been treated with transcranial magnetic stimulation (TMS), but no studies investigated the outcomes in patients comorbid with ADHD. Methods: Twenty-two ADHD/CocUD and 208 CocUD-only participants received a high-frequency (15 Hz) rTMS treatment stimulating the left-DLPFC. We investigated whether both groups of patients shared similar demographic and clinical characteristics at baseline. Then, we monitored the effect of treatment testing for potential differences between groups. Results: At baseline demographic, toxicology and clinical features were not different between the two groups except for global severity index (GSI from SCL-90): patients of ADHD/CocUD group reported higher general symptomatology compared to the CocUD-only group. Concerning the effect of treatment, both groups significantly improved over time regarding cocaine use, craving, and other negative affect symptoms. No differences were observed between groups. Conclusions: To our knowledge, this is the first study comparing the demographic characterization and rTMS clinical improvements of patients with a dual diagnosis of ADHD and CocUD against CocUD-only patients. Cocaine use and common self-reported withdrawal/abstinence symptoms appear to benefit from rTMS treatment with no differences between groups. Future studies are needed to further investigate these preliminary results.

16.
J Behav Addict ; 10(2): 361-370, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34232905

RESUMO

BACKGROUND: Several behaviors, besides consumption of psychoactive substances, produce short-term reward that may lead to persistent aberrant behavior despite adverse consequences. Growing evidence suggests that these behaviors warrant consideration as nonsubstance or "behavioral" addictions, such as pathological gambling, internet gaming disorder and internet addiction. CASE PRESENTATION: Here, we report two cases of behavioral addictions (BA), compulsive sexual behavior disorder for online porn use and internet gaming disorder. A 57-years-old male referred a loss of control over his online pornography use, started 15 years before, while a 21-years-old male university student reported an excessive online gaming activity undermining his academic productivity and social life. Both patients underwent a high-frequency repetitive transcranial magnetic stimulation (rTMS) protocol over the left dorsolateral prefrontal cortex (l-DLPFC) in a multidisciplinary therapeutic setting. A decrease of addictive symptoms and an improvement of executive control were observed in both cases. DISCUSSION: Starting from these clinical observations, we provide a systematic review of the literature suggesting that BAs share similar neurobiological mechanisms to those underlying substance use disorders (SUD). Moreover, we discuss whether neurocircuit-based interventions, such as rTMS, might represent a potential effective treatment for BAs.


Assuntos
Comportamento Aditivo/psicologia , Comportamento Aditivo/terapia , Literatura Erótica/psicologia , Transtorno de Adição à Internet/psicologia , Transtorno de Adição à Internet/terapia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
17.
Biology (Basel) ; 10(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062953

RESUMO

In recent years, hair has become an alternative biological specimen for drug testing in the fields of forensic and clinical toxicology. The advantages of hair testing include larger detection windows (months/years), depending on the length of the hair shaft, compared to those of urine/blood (hours to 2-4 days for most drugs). Segmental hair analysis can disclose a month-to-month (considering 1 cm segment cuts) information of drug exposure (single or repeated) and potentially identify patterns of drug use/administration. Repetitive transcranial magnetic stimulation (rTMS) was recently proposed as a valid tool for therapeutic purposes in addictions, including cocaine use disorder (CocUD). Here, we proposed hair testing analyses of classic drugs of abuse in a clinical setting to monitor the clinical changes in treatment-seeker CocUD patients undergoing protocol treatments with rTMS stimulating the left dorsolateral prefrontal cortex (l-DLPFC). We collected hair samples from nine CocUD patients at different stages from the beginning of treatments. Hair sample analyses revealed significant changes in the patterns of cocaine use, according to the negativity of urine screening tests and the clinical reductions of craving. These data, albeit preliminary, suggest that hair testing analysis of classic drugs of abuse could be extended to clinical settings to monitor the clinical efficacy of innovative therapeutic interventions, such as rTMS.

18.
Front Psychiatry ; 11: 158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180745

RESUMO

Background: Cocaine is a psychostimulant drug used as performance enhancer throughout history. The prolonged use of cocaine is associated with addiction and a broad range of cognitive deficits. Currently, there are no medications proven to be effective for cocaine-use disorder (CocUD). Previous preliminary clinical work suggests some benefit from repetitive transcranial magnetic stimulation (rTMS) stimulating the prefrontal cortex (PFC), involved in inhibitory cognitive control, decision-making and attention. All published studies to date have been limited by small sample sizes and short follow-up times. Methods: This is a retrospective observational study of 284 outpatients (of whom 268 were men) meeting DSM-5 criteria for CocUD. At treatment entry, most were using cocaine every day or several times per week. All patients underwent 3 months of rTMS and were followed for up to 2 years, 8 months. Self-report, reports by family or significant others and regular urine screens were used to assess drug use. Results: Median time to the first lapse (resumption of cocaine use) since the beginning of treatment was 91 days. For most patients, TMS was re-administered weekly, then monthly, throughout follow-up. The decrease in frequency of rTMS sessions was not accompanied by an increase in lapses to cocaine use. Mean frequency of cocaine use was <1·0 day/month (median 0), while serious rTMS-related adverse events were infrequent, consistent with published reports from smaller studies. Conclusions: This is the first follow-up study to show that rTMS treatment is accompanied by long-lasting reductions in cocaine use in a large cohort.

19.
Brain Stimul ; 13(4): 1124-1149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413554

RESUMO

BACKGROUND: The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE: To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS: The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS: A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION: There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.


Assuntos
Pesquisa Biomédica/métodos , Atenção à Saúde/métodos , Doenças do Sistema Nervoso/terapia , Telemedicina/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Idoso , Comportamento Aditivo/terapia , Betacoronavirus , Encéfalo/fisiologia , COVID-19 , Criança , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Guias de Prática Clínica como Assunto , SARS-CoV-2 , Acidente Vascular Cerebral/terapia , Transtornos Relacionados ao Uso de Substâncias/terapia
20.
J Neurochem ; 109(4): 1096-105, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19519781

RESUMO

Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel orthosteric agonist (3S)-3-[(3-amino-3-carboxypropyl(hydroxy)phosphinyl)-hydroxymethyl]-5-nitrothiophene (LSP1-3081) and l-2-amino-4-phosphonobutanoate (L-AP4). Here, we show that both drugs dose-dependently reduced glutamate- and GABA-mediated post-synaptic potentials, and increased the paired-pulse ratio. Moreover, they decreased the frequency, but not the amplitude, of glutamate and GABA spontaneous and miniature post-synaptic currents. Their inhibitory effect was abolished by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine and was lost in slices from mGlu4 knock-out mice. Furthermore, (S)-3,4-dicarboxyphenylglycine did not affect glutamate and GABA transmission. Finally, intrastriatal LSP1-3081 or L-AP4 injection improved akinesia measured by the cylinder test. These results demonstrate that mGlu4 receptor selectively modulates striatal glutamate and GABA synaptic transmission, suggesting that it could represent an interesting target for selective pharmacological intervention in movement disorders involving basal ganglia circuitry.


Assuntos
Antiparkinsonianos/uso terapêutico , Ácido Glutâmico/fisiologia , Neostriado/fisiologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Aminobutiratos/farmacologia , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Masculino , Movimento/efeitos dos fármacos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Simpatolíticos , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA