Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Solid State Nucl Magn Reson ; 124: 101858, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796278

RESUMO

Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cß, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.

2.
Toxicol Pathol ; 50(7): 867-870, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305575

RESUMO

Hematology and bone marrow analysis is central to our understanding of the hematopoietic system and how it responds to insults, and this session presented during the 2022 STP symposium provided a review of current and novel approaches for the evaluation of the hematopoietic system in the context of nonclinical investigations. This publication summarizes the information presented on novel approaches for evaluation of the hematopoietic system using automated hematology analyzers, including details around the quantitative assessment of bone marrow cell suspensions as well as introducing several newly available hematology parameters. It was followed by a discussion on intravital microscopy and live cell imaging and how these methods can assist with de-risking hematopoiesis-associated safety concerns, and a review of recent assays using artificial intelligence for the evaluation of bone marrow.


Assuntos
Inteligência Artificial , Sistema Hematopoético , Hematopoese , Células da Medula Óssea , Medula Óssea
3.
Luminescence ; 37(7): 1064-1072, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35434912

RESUMO

A benzofuran glycinamide-based chemosensor, 3-(2-([4-fluorobenzyl]amino)acetamido)benzofuran-2-carboxamide (BGA) was developed and synthesized for the selective and sensitive detection of Fe3+ ions. The photophysical properties of the probe BGA were studied using UV-visible light absorption and fluorescence spectrophotometers. The chemosensor BGA showed a marked 'on-off' fluorescence response towards Fe3+ ions in the presence of other metal ions in DMSO/H2 O solution (9/1, v/v). The very low limits of detection (LOD) were calculated to be 10 nM and 43 nM using UV-visible light absorption and fluorescence spectrophotometers, respectively. Job's plot analysis revealed the formation of a BGA-Fe3+ complex with a 1:1 binding stoichiometry ratio using UV-visible light spectroscopy. The sensing mechanism was also demonstrated using density functional theory calculation.


Assuntos
Benzofuranos , Corantes Fluorescentes , Corantes Fluorescentes/química , Íons/análise , Limite de Detecção , Espectrometria de Fluorescência
4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947993

RESUMO

Type 1 diabetes (T1D) is characterized by hyperphagia, hyperglycemia and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We have reported previously that daily leptin injections help to alleviate these symptoms. Therefore, we hypothesized that leptin gene therapy could help to normalize the neuroendocrine dysfunction seen in T1D. Adult male Sprague Dawley rats were injected i.v. with a lentiviral vector containing the leptin gene or green fluorescent protein. Ten days later, they were injected with the vehicle or streptozotocin (STZ). HPA function was assessed by measuring norepinephrine (NE) levels in the paraventricular nucleus (PVN) and serum corticosterone (CS). Treatment with the leptin lentiviral vector (Lepvv) increased leptin and insulin levels in non-diabetic rats, but not in diabetic animals. There was a significant reduction in blood glucose levels in diabetic rats due to Lepvv treatment. Both NE levels in the PVN and serum CS were reduced in diabetic rats treated with Lepvv. Results from this study provide evidence that leptin gene therapy in STZ-induced diabetic rats was able to partially normalize some of the neuroendocrine abnormalities, but studies with higher doses of the Lepvv are needed to develop this into a viable option for treating T1D.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Vetores Genéticos/administração & dosagem , Leptina/genética , Animais , Corticosterona/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Terapia Genética , Injeções Intravenosas , Lentivirus/genética , Masculino , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley
5.
J Biomol NMR ; 74(4-5): 229-237, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31894471

RESUMO

Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , N-Formilmetionina Leucil-Fenilalanina/química , Isótopos de Nitrogênio
7.
Mod Pathol ; 33(5): 834-845, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31822802

RESUMO

Although the distinction of classical Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma using morphology and immunostains is straightforward in most instances, occasional cases pose diagnostic challenge. We sought to determine the utility of the novel YE361 STAT6 rabbit monoclonal antibody in Hodgkin lymphoma and diagnostically challenging B- and T-cell non-Hodgkin lymphoma entities with Hodgkin-like features. Cases from seven institutions included: 57 classical Hodgkin lymphomas (31% EBV+), 34 nodular lymphocyte predominant Hodgkin lymphomas, 34 mimicking B- and T-cell non-Hodgkin lymphomas, and 7 reactive lymphoproliferations. After review of histology, STAT6YE361 immunostaining was performed. The intensity and spatial localization of immunopositivity was assessed in neoplastic cells. Additional FISH for programmed death ligand-1 (PD-L1) was performed in one patient in paired treatment-naive and relapse biopsy tissues. Two STAT6YE361 immunopositive cases were examined by whole-exome sequencing after flow sorting to assess mutations in STAT6 pathway genes. Most classical Hodgkin lymphomas showed nuclear staining for STAT6YE361 [46/57 cases (80%)] on Hodgkin cells. Staining was exclusively nuclear in a minority [12/46 (26%)], while dual nuclear and cytoplasmic localization was more common [34/46 (74%)]. In contrast, all nodular lymphocyte predominant Hodgkin lymphomas [0/34 (0%)] were negative for nuclear STAT6YE361 staining on the lymphocyte predominant cells. Within B- and T-cell non-Hodgkin lymphomas, nuclear STAT6YE361 was seen in: B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, and in primary mediastinal large B-cell lymphoma. Strong PD-L1 gene amplification was noted in the paired cHL and relapse B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, although STAT6YE361 was negative in both biopsies. Whole-exome sequencing identified mutations in B2M, XPO1, and ITPKB as well CISHP213L (in the STAT pathway) in one classical Hodgkin lymphoma patient positive for nuclear STAT6YE361 although no underlying STAT6 mutations were observed in either sample examined. STAT6YE361 nuclear staining has 100% positive predictive value and 85.7% negative predictive value in confirming or excluding classical Hodgkin lymphoma diagnosis in the distinction from nodular lymphocyte predominant Hodgkin lymphoma and other benign and malignant entities.


Assuntos
Biomarcadores Tumorais/análise , Doença de Hodgkin/diagnóstico , Linfoma não Hodgkin/diagnóstico , Fator de Transcrição STAT6/biossíntese , Diagnóstico Diferencial , Humanos , Valor Preditivo dos Testes , Fator de Transcrição STAT6/análise
8.
J Chem Phys ; 150(14): 144201, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981235

RESUMO

Heteronuclear spin decoupling is a highly important component of solid-state NMR experiments to remove undesired coupling interactions between unlike spins for spectral resolution. Recently, experiments using a unification strategy of standard decoupling schemes were presented for high radio-frequency (RF) amplitudes and slow-intermediate magic-angle-spinning (MAS) frequencies, in the pursuit of deeper understanding of spin decoupling under phase-modulated RF irradiation [A. Equbal et al., J. Chem. Phys. 142, 184201 (2015)]. The approach, unified two-pulse heteronuclear decoupling (UTPD), incorporates the simultaneous time- and phase-modulation strategies, commonly used in solid-state NMR. Here, the UTPD based decoupling scheme is extended to the experimentally increasingly important regime of low RF amplitudes and fast MAS frequencies. The unified decoupling approach becomes increasingly effective in identifying the deleterious dipole-dipole and, in particular, J recoupling conditions which become critical for the low-amplitude RF regime. This is because J coupling is isotropic and therefore not averaged out by sample spinning unlike the anisotropic dipole-dipole coupling. Numerical simulations and analytic theory are used to understand the effects of various nuclear spin interactions on the decoupling performance of UTPD, in particular, the crucial difference between the low-phase and high-phase UTPD conditions with respect to J coupling. In the UTPD scheme, when the cycle-frequency of the pulse-sequence is comparable to the RF nutation frequency, the existence of a non-zero effective rotation in the basic two-pulse scheme becomes an essential feature for the efficient and robust averaging out of the scalar J coupling. This broad viewpoint is expected to bring different optimum low-power decoupling pulse schemes under a common footing.

9.
J Chem Phys ; 150(13): 134201, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954060

RESUMO

Rotational-Echo DOuble Resonance, REDOR, is an experimentally robust and a well-established dipolar-recoupling technique to measure dipolar couplings between isolated pairs of spin-1/2 heteronuclei in solid-state nuclear magnetic resonance. REDOR can also be used to estimate motional order parameters when the bond distance is known, for example, in the case of directly bound nuclei. However, the relatively fast dipolar dephasing for strongly coupled spin-1/2 pairs, such as 13C-1H, makes the stroboscopic measurement required in this experiment challenging, even at fast Magic-Angle-Spinning (MAS) frequencies. In such cases, modified REDOR-based methods like Shifted-REDOR (S-REDOR) are used to scale the dipolar coupling compared to REDOR. This is achieved by changing the position of one of the two recoupling π-pulses in a rotor period. This feature, however, comes at the cost of mixing multiple Fourier components of the dipolar coupling and can, additionally, require high radio-frequency amplitudes to realise small scaling factors. We introduce here a general pulse scheme which involves shifting both the π pulses in the REDOR scheme to achieve arbitrary scaling factors whilst retaining the robustness and simplicity of REDOR recoupling and avoiding the disadvantages of S-REDOR. The classical REDOR is a specific case of this scheme with a scaling factor of one. We demonstrate the results on isolated 13C-15N and 1H-13C spin pairs at 20 and 62.5 kHz MAS, respectively.

10.
J Am Chem Soc ; 140(2): 574-577, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29266934

RESUMO

Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.

12.
J Biol Chem ; 291(4): 1591-1603, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627829

RESUMO

Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo(-/-)) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.


Assuntos
Heme/biossíntese , Receptores de GABA/metabolismo , Ácido Aminolevulínico/metabolismo , Animais , Morte Celular , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Protoporfirinas/genética , Protoporfirinas/metabolismo , Receptores de GABA/genética
13.
J Chem Phys ; 146(10): 104202, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298092

RESUMO

Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

14.
J Chem Phys ; 146(8): 084202, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249410

RESUMO

Major advances have recently been made in the field of heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance (NMR). These developments have improved the resolution and sensitivity of the NMR spectrum of spins coupled to protons. One such new scheme, denoted as rCWApA, has proven to be robust with practically no need for parameter optimization [A. Equbal et al. Chem. Phys. Lett., 635, 339 (2015)]. Most of the experiments with rCWApA have been carried out in the regimes of slow to moderate magic-angle spinning while simultaneously applying high decoupling radio-frequency amplitudes. Here, we explore the performance of the rCWApA sequence and its predecessor rCWA in the regime of low-power radio-frequency irradiation and fast magic-angle spinning. The robustness of the refocused continuous-wave (rCW) schemes to experimental parameters such as pulse lengths and offset irradiation is demonstrated. Numerical simulations and analytical theory have been used to understand the effects of various nuclear spin interactions on the decoupling performance of the low-power rCW decoupling scheme relative to other decoupling methods. This has lead to the design of an "optimum low-power decoupling sequence" that can be used without parameter optimization. This result is particularly important in the context of samples with low signal to noise.

15.
J Chem Phys ; 146(24): 244201, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668030

RESUMO

Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.

16.
J Chem Phys ; 146(24): 244202, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668064

RESUMO

Pulse imperfections like pulse transients and radio-frequency field maladjustment or inhomogeneity are the main sources of performance degradation and limited reproducibility in solid-state nuclear magnetic resonance experiments. We quantitatively analyze the influence of such imperfections on the performance of symmetry-based pulse sequences and describe how they can be compensated. Based on a triple-mode Floquet analysis, we develop a theoretical description of symmetry-based dipolar recoupling sequences, in particular, R26411, calculating first- and second-order effective Hamiltonians using real pulse shapes. We discuss the various origins of effective fields, namely, pulse transients, deviation from the ideal flip angle, and fictitious fields, and develop strategies to counteract them for the restoration of full transfer efficiency. We compare experimental applications of transient-compensated pulses and an asynchronous implementation of the sequence to a supercycle, SR26, which is known to be efficient in compensating higher-order error terms. We are able to show the superiority of R26 compared to the supercycle, SR26, given the ability to reduce experimental error on the pulse sequence by pulse-transient compensation and a complete theoretical understanding of the sequence.

17.
J Chem Phys ; 146(13): 134105, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390347

RESUMO

We present a general theoretical description that allows us to describe the influence of isotropic chemical shift in homonuclear and heteronuclear dipolar recoupling experiments in magic-angle-spinning solid-state NMR. Through a transformation of the Hamiltonian into an interaction frame with the combined radio-frequency irradiation and the isotropic chemical shift, we determine an effective Hamiltonian to first order with respect to the relevant internal nuclear spin interactions. This unravels the essential resonance conditions for efficient dipolar recoupling. Furthermore, we propose how to handle situations where the resonance conditions are not exactly fulfilled. To verify the general theoretical description, we compare numerical simulations using a time-sliced time-dependent Hamiltonian with simulations using the calculated effective Hamiltonian for propagation. The comparisons are exemplified for the homonuclear dipolar recoupling experiments C721 and POST-C721.

18.
Toxicol Ind Health ; 33(3): 265-276, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27102426

RESUMO

The aim of this study was to investigate the beneficial effects of zinc (Zn) in preventing lead (Pb)-induced reproductive toxicity in Wistar rats. The rats were divided into four groups, namely, control group, Pb group, Zn group, and Pb + Zn group. Animals were exposed to Pb (819 mg of Pb/L) or Zn (71 mg of Zn/L) or both through drinking water for 65 days. Rats exposed to Pb showed decreased weights of testes and accessory sex organs. Significant decrease in the testicular daily sperm production, epididymal sperm count, motility, viability, and number of hypoosmotic tail coiled sperm was observed in Pb-exposed rats. Testicular 3ß- and 17ß-hydroxysteroid dehydrogenase activity levels and circulatory testosterone levels were also decreased significantly in Pb-exposed rats. A significant increase in the lipid peroxidation products with a significant decrease in the activities of catalase and superoxide dismutase were observed in the testes and epididymis of Pb-exposed rats. Moreover, the testicular architecture showed lumens devoid of sperm in Pb-exposed rats. Supplementation of Zn mitigated Pb-induced oxidative stress and restored the spermatogenesis and steroidogenesis in Pb-exposed rats. In conclusion, cotreatment of Zn is effective for recovering suppressed spermatogenesis, steroidogenesis, elevated oxidative status, and histological damage in the testis of rats treated with Pb.


Assuntos
Suplementos Nutricionais , Epididimo/efeitos dos fármacos , Infertilidade Masculina/prevenção & controle , Intoxicação por Chumbo/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Zinco/uso terapêutico , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/química , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Suplementos Nutricionais/efeitos adversos , Epididimo/metabolismo , Epididimo/patologia , Infertilidade Masculina/etiologia , Intoxicação por Chumbo/metabolismo , Intoxicação por Chumbo/patologia , Intoxicação por Chumbo/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Compostos Organometálicos/antagonistas & inibidores , Compostos Organometálicos/toxicidade , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/uso terapêutico , Distribuição Aleatória , Ratos Wistar , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Doenças Transmitidas pela Água/metabolismo , Doenças Transmitidas pela Água/patologia , Doenças Transmitidas pela Água/fisiopatologia , Doenças Transmitidas pela Água/prevenção & controle , Zinco/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA