Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35254051

RESUMO

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Assuntos
Ligas , Óxidos , Catálise , Domínio Catalítico , Metais , Oxirredução , Óxidos/química
2.
J Am Chem Soc ; 145(9): 5114-5124, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848504

RESUMO

Palladium-silver-based alloy catalysts have a great potential for CO-free hydrogen production from formic acid for fuel cell applications. However, the structural factors affecting the selectivity of formic acid decomposition are still debated. Herein, the decomposition pathways of formic acid on Pd-Ag alloys with different atomic configurations have been investigated to identify the alloy structures yielding high H2 selectively. Several PdxAg1-x surface alloys with various compositions were generated on a Pd(111) single crystal; their atomic distribution and electronic structure were determined by a combination of infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). It was established that the Ag atoms with Pd neighbors are electronically altered, and the degree of alteration correlates with the number of nearest Pd. Temperature-programmed reaction spectroscopy (TPRS) and DFT demonstrated that the electronically altered Ag domains create a new reaction pathway that selectively dehydrogenates formic acid. In contrast, Pd monomers surrounded by Ag are demonstrated to have a similar reactivity compared to pristine Pd(111), yielding CO and H2O in addition to the dehydrogenation products. However, they bind to the produced CO weaker than pristine Pd, demonstrating an enhancement in resistance to CO poisoning. This work therefore shows that surface Ag domains modified by interaction with subsurface Pd are the key active sites for selective decomposition of formic acid, while surface Pd atoms are detrimental to selectivity. Hence, the decomposition pathways can be tailored for CO-free H2 production on Pd-Ag alloy systems.

3.
Proc Natl Acad Sci U S A ; 117(37): 22657-22664, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32879000

RESUMO

The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound. This migration is driven by the population of weakly bound states on the palladium at high hydrogen atom coverages which are nearly isoenergetic with binding sites on the silver. The rate of hydrogen atom migration depends on the palladium-silver interface length, with smaller palladium islands more efficiently supplying hydrogen atoms to the silver. This study demonstrates that hydrogen atoms can migrate from a more strongly binding metal to a more weakly binding surface under special conditions, such as high dihydrogen pressure.

4.
J Am Chem Soc ; 144(38): 17387-17398, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112426

RESUMO

The relative stability of reactive intermediates and reactants on a surface, which dictates the rate and selectivity of catalytic reactions in both gas and liquid phases, is dependent on numerous factors. One well-established example is secondary interactions, such as van der Waals interactions between the catalyst surface and the pendant group of the intermediate, which can govern reaction selectivity for coupling reactions. Herein, we directly show that interactions between adsorbed reaction intermediates and reactant molecules increase the binding energy and affects the geometrical arrangement of coadsorbed reactant/solvent molecules. Evidence for this effect is demonstrated for the oxidative coupling reaction of methanol on a single crystal gold (Au(110)) surface. The rate-limiting reaction intermediate for methanol self-coupling, methoxy, stabilizes excess adsorbed methanol, which desorbs as a result of beta-hydride decomposition of the adsorbed methoxy. Direct molecular-scale imaging by scanning tunneling microscopy, supplemented by density functional theory, revealed interactive structures formed by methoxy and coadsorbed methanol. Interactions between the methoxy intermediate and coadsorbed methanol stabilizes a hydrogen-bonded network comprising methoxy and methanol by a minimum of 0.13 eV per methanol molecule. Inclusion of such interactions between reaction intermediates and coadsorbed reactants and solvents in kinetic models is important for microkinetic analysis of the rates and selectivities of catalytic reactions in both the gas and liquid phases whenever appreciable coverages of species from the ambient phase exist.


Assuntos
Ouro , Metanol , Catálise , Etanol , Ouro/química , Hidrogênio , Metanol/química , Solventes/química
5.
J Am Chem Soc ; 144(37): 16778-16791, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36054824

RESUMO

The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.

6.
J Am Chem Soc ; 142(37): 15907-15916, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32791833

RESUMO

The restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different compositions and morphologies at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-time scale restructuring of Pd deposited on Ag using microscopy, spectroscopy, and novel simulation methods. By developing and performing accelerated machine-learning molecular dynamics followed by an automated analysis method, we discover and characterize previously unidentified surface restructuring mechanisms in an unbiased fashion, including Pd-Ag place exchange and Ag pop-out as well as step ascent and descent. Remarkably, layer-by-layer dissolution of Pd into Ag is always preceded by an encapsulation of Pd islands by Ag, resulting in a significant migration of Ag out of the surface and a formation of extensive vacancy pits within a period of microseconds. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. Our approach is broadly applicable to complex multimetallic systems and enables the previously intractable mechanistic investigation of restructuring dynamics at atomic resolution.

7.
Chem Rev ; 118(5): 2816-2862, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29116787

RESUMO

The activation of O2 on metal surfaces is a critical process for heterogeneous catalysis and materials oxidation. Fundamental studies of well-defined metal surfaces using a variety of techniques have given crucial insight into the mechanisms, energetics, and dynamics of O2 adsorption and dissociation. Here, trends in the activation of O2 on transition metal surfaces are discussed, and various O2 adsorption states are described in terms of both electronic structure and geometry. The mechanism and dynamics of O2 dissociation are also reviewed, including the importance of the spin transition. The reactivity of O2 and O toward reactant molecules is also briefly discussed in the context of catalysis. The reactivity of a surface toward O2 generally correlates with the adsorption strength of O, the tendency to oxidize, and the heat of formation of the oxide. Periodic trends can be rationalized in terms of attractive and repulsive interactions with the d-band, such that inert metals tend to feature a full d band that is low energy and has a large spatial overlap with adsorbate states. More open surfaces or undercoordinated defect sites can be much more reactive than close-packed surfaces. Reactions between O and other species tend to be more prevalent than reactions between O2 and other species, particularly on more reactive surfaces.

8.
Phys Chem Chem Phys ; 22(11): 6202-6209, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129370

RESUMO

We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.30 ML (monolayer) and continue to develop until aggregating and forming a nearly conformal Pd bi-layer at a coverage near 2 ML. Analysis of the STM images provides quantitative evidence of a transition from single to bi-layer Pd growth on the AgOx layer, and a continuation of bi-layer growth with increasing Pd coverage from ∼0.3 to 2 ML. XPS further demonstrates that the AgOx layer efficiently transfers oxygen to Pd at 300 K, and that the fraction of Pd that oxidizes is approximately equal to the local oxygen coverage in the AgOx layer for Pd coverages up to at least ∼0.7 ML. Our results show that oxygen in the initial AgOx layer mediates the growth and structural properties of Pd on the AgOx/Ag(111) surface, enabling the preparation of model PdAg surfaces with uniformly distributed single or bi-layer Pd clusters. Facile auto-oxidation of Pd by AgOx further suggests that oxygen transfer from Ag to Pd could play a role in promoting oxidation chemistry of adsorbed molecules on PdAg surfaces.

9.
Angew Chem Int Ed Engl ; 59(27): 10864-10867, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32259381

RESUMO

Controlling the selectivity of catalytic reactions is a critical aspect of improving energy efficiency in the chemical industry; thus, predictive models are of key importance. Herein the performance of a heterogeneous, nanoporous Au catalyst is predicted for the complex catalytic self-coupling of the series of C2 -C4 alkyl alcohols, based solely on the known kinetics of the elementary steps of the catalytic cycle for methanol coupling, using scaling methods augmented by density functional theory. Notably, a sharp decrease in selectivity for ester formation with increasing molecular weight to favor the aldehyde due to van der Waals interactions of reaction intermediates with the surface was predicted and subsequently verified quantitatively by experiment. Further, the agreement between theory and experiment clearly demonstrates the efficacy of this approach for building a predictive model of catalytic behavior for a homologous set of reactants using a small set of experimental information.

10.
J Am Chem Soc ; 140(38): 12210-12215, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30176212

RESUMO

The nonuniform reactivity of adsorbed oxygen during the selective oxidation of methanol on Au(110)-(1×2) was demonstrated using in situ scanning tunneling microscopy (STM), establishing the importance of both atomic and mesoscale structure in determining reaction kinetics. At coverages above 0.06 ML, oxygen consumption occurs preferentially along [11̅0] direction, creating local regions completely devoid of oxygen between oxygen islands. The directionally specific reactivity is attributed to a combination of the weaker binding of oxygen atoms at chain termini and the release of surface strain induced by O bonding to Au. The generality of this phenomenon is illustrated by analogous, but kinetically contrasting behavior, for reaction of 2-propanol with oxygen covered Au(110)-(1×2). Even at low O coverages, there are structurally related changes in the reactivity for the reaction with methanol. With decreasing O coverage, a slow reaction period is followed by a fast reaction period, the latter starting when oxygen coverage decreases to ∼0.06 monolayer, independent of the initial coverage. This increase in reactivity is attributed to a sudden destabilization of the island structure. These results demonstrate that both local and mesocale structures can affect reactivity.

11.
Nat Mater ; 16(5): 558-564, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992418

RESUMO

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.

12.
Chemistry ; 24(8): 1833-1837, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28960528

RESUMO

A highly modular synthesis of designed catalysts with controlled bimetallic nanoparticle size and composition and a well-defined structural hierarchy is demonstrated. Exemplary catalysts-bimetallic dilute Ag-in-Au nanoparticles partially embedded in a porous SiO2 matrix (SiO2 -Agx Auy )-were synthesized by the decoration of polymeric colloids with the bimetallic nanoparticles followed by assembly into a colloidal crystal backfilled with the matrix precursor and subsequent removal of the polymeric template. This work reports that these new catalyst architectures are significantly better than nanoporous dilute AgAu alloy catalysts (nanoporous Ag3 Au97 ) while retaining a clear predictive relationship between their surface reactivity with that of single-crystal Au surfaces. This paves the way for broadening the range of new catalyst architectures required for translating the designed principles developed under controlled conditions to designed catalysts under operating conditions for highly selective coupling of alcohols to form esters. Excellent catalytic performance of the porous SiO2 -Agx Auy structure for selective oxidation of both methanol and ethanol to produce esters with high conversion efficiency, selectivity, and stability was demonstrated, illustrating the ability to translate design principles developed for support-free materials to the colloid-templated structures. The synthetic methodology reported is customizable for the design of a wide range of robust catalytic systems inspired by design principles derived from model studies. Fine control over the composition, morphology, size, distribution, and availability of the supported nanoparticles was demonstrated.

13.
Phys Chem Chem Phys ; 20(4): 2196-2204, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29234757

RESUMO

The water-oxygen-gold interface is important in many surface processes and has potential influence on heterogeneous catalysis. Herein, it is shown that water facilitates the migration of atomic oxygen on Au(110), demonstrating the dynamic nature of surface adsorption. We demonstrate this effect for the first time, using in situ scanning tunnelling microscopy (STM), temperature-programmed reaction spectroscopy (TPRS) and first-principles theoretical calculations. The dynamic interaction of water with adsorbed O maintains a high dispersion of O on the surface, potentially creating reactive transient species. At low temperature and pressure, isotopic experiments show that adsorbed oxygen on the Au(110) surface exchanges with oxygen in H218O. The presence of water modulates local electronic properties and facilitates oxygen exchange. Combining experimental results and theory, we propose that hydroxyl is transiently formed via proton transfer from the water to adsorbed oxygen. Hydroxyl groups easily recombine to regenerate water and adsorbed oxygen atoms, the net result of which is migration of the adsorbed oxygen without significant change in its overall distribution on the surface. The presence of water creates a dynamic surface where mobile surface oxygen atoms and hydroxyls are present, which can lead to a better performance of gold catalysis in oxidation reactions.

14.
J Am Chem Soc ; 138(46): 15243-15250, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27775885

RESUMO

Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

15.
Faraday Discuss ; 188: 57-67, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27376884

RESUMO

The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.

16.
Philos Trans A Math Phys Eng Sci ; 374(2061)2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26755756

RESUMO

Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions. In this review, we outline this approach in the context of a particular catalyst-nanoporous gold (npAu)-which is an unsupported, dilute AgAu alloy catalyst that is highly active for the selective oxidative transformation of alcohols. Fundamental surface science studies on Au single crystals and AgAu thin-film alloys in combination with theoretical modelling were used to identify the principles which define the reactivity of npAu and subsequently enabled prediction of new reactive pathways on this material. Specifically, weak van der Waals interactions are key to the selectivity of Au materials, including npAu. We also briefly describe other systems in which this integrated approach was applied.

17.
Phys Chem Chem Phys ; 18(38): 26844-26853, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722678

RESUMO

One of the most critical factors in oxidation catalysis is controlling the state of oxygen on the surface. Au and Ag are both effective selective oxidation catalysts for various reactions, and their interactions with oxygen are critical for determining their catalytic performance. Here, we show that the state of oxygen on a catalytic surface can be controlled by alloying Au and Ag. Using temperature programmed desorption, density functional theory (DFT), and Monte Carlo simulations, we examine how alloying Au into an Ag(110) surface affects O2 dissociation, O coverage, and O stability. DFT calculations indicate that Au resides in the second layer, in agreement with previous experimental findings. The minimum ensemble size for O2 dissociation is 2 Ag atoms in adjacent rows of the second layer. Surprisingly, adsorbed O2 and the dissociation transition state interact directly with metal atoms in the adjacent trough, such that Au in this position inhibits O2 dissociation by direct repulsion with oxygen electronic states. Using Monte Carlo simulations based on DFT energetics, we create models of the surface that agree closely with our experimental results. Both show that the O2 uptake decreases nearly linearly as the Au concentration increases, and no O2 uptake occurs for Au concentrations above 50%. For Au concentrations greater than 18%, increasing the Au concentration also decreases the stability of the adsorbed O. Based on these results, the O coverage and O stability can be tuned, in some cases independently. We also study how the reactivity of the surface is affected by these factors using CO2 oxidation as a simple test reaction.

18.
Acc Chem Res ; 47(3): 761-72, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24387694

RESUMO

Though metallic gold is chemically inert under ambient conditions, its surface is extremely reactive and selective for many key oxidative chemical transformations when activated by atomic oxygen. A molecular-level understanding of the mechanism of these processes could allow researchers to design "green" catalytic processes mediated by gold-based materials. This Account focuses on the mechanistic framework for oxidative-coupling reactions established by fundamental studies on oxygen-activated Au(111) and the application of these principles to steady-state catalytic conditions. We also discuss the importance of the paradigms discovered both for predicting new oxidative-coupling reactions and for understanding existing literature. The mechanistic framework for the oxidative coupling of alcohols on gold surfaces predicts that new oxidative-coupling reactions should occur between amines and aldehydes and amines and alcohols as well as through alcohol carbonylation. Adsorbed atomic oxygen on the gold surface facilitates the activation of the substrates, and nucleophilic attack and ß-H elimination are the two fundamental reactions that propagate the versatile chemistry that ensues. In the self-coupling of primary alcohols, adsorbed atomic oxygen first activates the O-H bond in the hydroxyl group at ∼150 K, which forms the corresponding adsorbed alkoxy groups. The rate-limiting step of the self-coupling reaction is the ß-H elimination reaction of alkoxy groups to form the corresponding aldehydes and occurs with an activation barrier of approximately 12 kcal/mol. The remaining alkoxy groups nucleophilically attack the electron-deficient aldehyde carbonyl carbon to yield the adsorbed "hemiacetal". This intermediate undergoes facile ß-H elimination to produce the final coupling products, esters with twice the number of carbon atoms as the starting alcohols. This mechanistic insight suggests that cross-coupling occurs between alcohols and aldehydes, based on the logic that the nucleophilic reaction should be independent of the origin of the aldehydes, whether formed in situ or introduced externally. As a further example, adsorbed amides, formed from deprotonation of amines by atomic oxygen, can also attack aldehydes nucleophilically to yield the corresponding amides. Our mechanistic framework can also explain more elaborate gold-mediated chemistry, such as a unique carbonylation reaction via two subsequent nucleophilic attacks. These model studies on well-defined Au(111) at low pressure predict steady-state catalytic behavior on nanoporous gold under practical conditions. The fundamental principles of this research can also explain many other oxygen-assisted gold-mediated reactions observed under ambient conditions.


Assuntos
Álcoois/química , Aldeídos/química , Ouro/química , Adsorção , Aminas/química , Catálise , Cristalização , Oxirredução , Oxigênio/química , Propriedades de Superfície
19.
J Am Chem Soc ; 136(38): 13333-40, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25170677

RESUMO

To achieve high selectivity for catalytic reactions between two or more reactants on a heterogeneous catalyst, the relative concentrations of the reactive intermediates on the surface must be optimized. If species compete for binding sites, their concentrations depend on their relative binding strengths to the surface. In this article we describe a general framework for predicting the relative stability of organic intermediates involved in oxygen-assisted reactions on metallic gold with broad relevance to catalysis by metals. Combining theory and experiment, we establish that van der Waals interactions between the reactive intermediates and the surface, although weak, determine relative stabilities and thereby dictate the conditions for optimum selectivity. The inclusion of these interactions is essential for predicting these trends. The concepts and methods employed here have broad applicability for determining the stability of intermediates on the surfaces of catalytic metals and specifically demonstrate the critical role of weak interactions in determining reaction selectivity among reactions of complex molecules.

20.
Chemistry ; 20(16): 4646-52, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24633724

RESUMO

Nanoporous gold, a dilute alloy of Ag in Au, activates molecular oxygen and promotes the oxygen-assisted catalytic coupling of methanol. Because this trace amount of Ag inherent to nanoporous gold has been proposed as the source of oxygen activation, a thin film Ag/Au alloy surface was studied as a model system for probing the origin of this reactivity. Thin alloy layers of Ag(x)Au(1-x), with 0.15≤x≤0.40, were examined for dioxygen activation and methanol self-coupling. These alloy surfaces recombine atomic oxygen at different temperatures depending on the alloy composition. Total conversion of methanol to selective oxidation products, that is, formaldehyde and methyl formate, was achieved at low initial oxygen coverage and at low temperature. Reaction channels for methyl formate formation occurred on both Au and Au/Ag mixed sites with a ratio, as was predicted from the local 2-dimensional composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA