Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Diabetologia ; 59(2): 363-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26537124

RESUMO

AIMS/HYPOTHESIS: Normal glucose metabolism depends on pancreatic secretion of insulin and glucagon. The bihormonal hypothesis states that while lack of insulin leads to glucose underutilisation, glucagon excess is the principal factor in diabetic glucose overproduction. A recent study reported that streptozotocin-treated glucagon receptor knockout mice have normal glucose tolerance. We investigated the impact of acute disruption of glucagon secretin or action in a mouse model of severe diabetes by three different approaches: (1) alpha cell elimination; (2) glucagon immunoneutralisation; and (3) glucagon receptor antagonism, in order to evaluate the effect of these on glucose tolerance. METHODS: Severe diabetes was induced in transgenic and wild-type mice by streptozotocin. Glucose metabolism was investigated using OGTT in transgenic mice with the human diphtheria toxin receptor expressed in proglucagon producing cells allowing for diphtheria toxin (DT)-induced alpha cell ablation and in mice treated with either a specific high affinity glucagon antibody or a specific glucagon receptor antagonist. RESULTS: Near-total alpha cell elimination was induced in transgenic mice upon DT administration and resulted in a massive decrease in pancreatic glucagon content. Oral glucose tolerance in diabetic mice was neither affected by glucagon immunoneutralisation, glucagon receptor antagonism, nor alpha cell removal, but did not deteriorate further compared with mice with intact alpha cell mass. CONCLUSIONS/INTERPRETATION: Disruption of glucagon action/secretion did not improve glucose tolerance in diabetic mice. Near-total alpha cell elimination may have prevented further deterioration. Our findings support insulin lack as the major factor underlying hyperglycaemia in beta cell-deficient diabetes.


Assuntos
Diabetes Mellitus Experimental , Glucagon , Intolerância à Glucose , Insulina/deficiência , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Toxina Diftérica , Glucagon/antagonistas & inibidores , Glucagon/metabolismo , Glucagon/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/patologia , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Teste de Tolerância a Glucose , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/genética , Estreptozocina
2.
PLoS Biol ; 11(4): e1001542, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630454

RESUMO

Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine cells and support an important role of PICK1/ICA69 in maintenance of metabolic homeostasis.


Assuntos
Intolerância à Glucose/metabolismo , Transtornos do Crescimento/metabolismo , Proteínas Nucleares/deficiência , Vesículas Secretórias/metabolismo , Animais , Autoantígenos/fisiologia , Células COS , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular , Chlorocebus aethiops , Drosophila melanogaster , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Intolerância à Glucose/genética , Transtornos do Crescimento/genética , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Hipófise/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Imagem com Lapso de Tempo , Rede trans-Golgi/metabolismo
3.
Br J Nutr ; 115(4): 629-36, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824730

RESUMO

Dietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW) dietary AGE on insulin sensitivity, expression of the receptor for AGE (RAGE), the AGE receptor 1 (AGER1) and TNF-α, F2-isoprostaglandins, body composition and food intake. For 2 weeks, thirty-six Sprague-Dawley rats were fed a diet containing 20% milk powder with different proportions of this being given as heated milk powder (0, 40 or 100%), either native (HMW) or hydrolysed (LMW). Gene expression of RAGE and AGER1 in whole blood increased in the group receiving a high AGE LMW diet, which also had the highest urinary excretion of the AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1). Urinary excretion of N ε-carboxymethyl-lysine increased with increasing proportion of heat-treated milk powder in the HMW and LMW diets but was unrelated to gene expression. There was no difference in insulin sensitivity, F2-isoprostaglandins, food intake, water intake, body weight or body composition between the groups. In conclusion, RAGE and AGER1 expression can be influenced by a high AGE diet after only 2 weeks in proportion to MG-H1 excretion. No other short-term effects were observed.


Assuntos
Dieta/efeitos adversos , Produtos Finais de Glicação Avançada/efeitos adversos , Hexosiltransferases/metabolismo , Receptor para Produtos Finais de Glicação Avançada/agonistas , Regulação para Cima , Animais , Biomarcadores/sangue , Biomarcadores/urina , Ingestão de Energia , Produtos Finais de Glicação Avançada/administração & dosagem , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/urina , Hexosiltransferases/sangue , Hexosiltransferases/química , Hexosiltransferases/genética , Temperatura Alta/efeitos adversos , Imidazóis/urina , Imidazolinas/urina , Lisina/análogos & derivados , Lisina/urina , Masculino , Proteínas do Leite/administração & dosagem , Proteínas do Leite/efeitos adversos , Proteínas do Leite/química , Peso Molecular , Proteólise , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Eliminação Renal , Testes de Toxicidade Subaguda , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Biol Chem ; 286(23): 20845-60, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21402696

RESUMO

Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained wFw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Gα(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Gα(12/13) pathway. The recognition pattern of wFw-Isn-NH(2) with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH(2) was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue for ghrelin agonists. Molecular modeling and docking experiments indicated that wFw-Isn-NH(2) binds in the classical agonist binding site between the extracellular segments of TMs III, VI, and VII, interacting closely with the aromatic cluster between TMs VI and VII, but that it does so in an opposite orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH(2) is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key residues especially in TM III.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptidomiméticos/farmacologia , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Substância P , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/química , Receptores de Grelina/genética
5.
Amino Acids ; 43(3): 1265-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22200933

RESUMO

L-Arginine (L-Arg) is a conditionally essential amino acid and a natural constituent of dietary proteins. Studies in obese rats and type 2 diabetic humans have indicated that dietary supplementation with L-Arg can diminish gain in white adipose tissue (WAT) and improve insulin sensitivity. However, the effects of L-Arg on glucose homeostasis, body composition and energy metabolism remain unclear. In addition, no studies have, to our knowledge, examined whether L-Arg has beneficial effects as a dietary supplement in the mouse model. In the present study, we investigated the effects of L-Arg supplementation to male C57BL/6 mice on an array of physiological parameters. L-Arg supplemented mice were maintained on a low-protein diet and body composition, appetite regulation, glucose tolerance, insulin sensitivity and energy expenditure were evaluated. A significant reduction in epididymal WAT was observed in L-Arg supplemented mice compared with mice fed an isocaloric control diet. Surprisingly, the L-Arg supplemented animals were hyperphagic corresponding to a highly significant decrease in feed efficiency, as body weight developed in a similar pattern in both experimental groups. Glucose homeostasis experiments revealed a major effect of L-Arg supplementation on glucose tolerance and insulin sensitivity, interestingly, independent of a parallel regulation in whole-body adiposity. Increased L-Arg ingestion also raised energy expenditure; however, no concurrent effect on locomotor activity, substrate metabolism or expression of uncoupling proteins (UCP1 and UCP2) in adipose tissues was displayed. In conclusion, dietary L-Arg supplementation substantially affects an array of metabolic-associated parameters including a reduction in WAT, hyperphagia, improved insulin sensitivity and increased energy expenditure in mice fed a low-protein diet.


Assuntos
Arginina/administração & dosagem , Hipoglicemiantes/administração & dosagem , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Adiposidade/efeitos dos fármacos , Animais , Arginina/efeitos adversos , Glicemia , Dieta com Restrição de Proteínas/efeitos adversos , Suplementos Nutricionais , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais , Glucose/metabolismo , Homeostase , Hiperfagia/induzido quimicamente , Hipoglicemiantes/efeitos adversos , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
6.
Neurosci Lett ; 449(1): 20-3, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18926875

RESUMO

The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac-superior mesenteric ganglionectomy (CGX). Irrespective of the operational procedure, rimonabant (10mg/kg) effectively reduced standard chow as well as palatable diet (ensure) intake. In conclusion, the data clearly demonstrate that neither vagal gut afferents, nor gut afferents traveling via the sympathetic nervous system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia.


Assuntos
Anorexia/induzido quimicamente , Anorexia/fisiopatologia , Gânglios Simpáticos/fisiologia , Piperidinas , Pirazóis , Nervo Vago/fisiologia , Análise de Variância , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ganglionectomia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Rimonabanto , Estilbamidinas/metabolismo , Vagotomia/métodos , Nervo Vago/cirurgia
7.
J Neuroendocrinol ; 31(7): e12699, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30776164

RESUMO

Huntington's disease (HD) is a heritable neurodegenerative disorder, characterised by metabolic disturbances, along with cognitive and psychiatric impairments. Targeting metabolic HD dysfunction via the maintenance of body weight and fat mass and restoration of peripheral energy metabolism can improve the progression of neurological symptoms. In this respect, we focused on the therapeutic potential of the orexigenic peptide hormone ghrelin, which plays an important role in promoting a positive energy balance. In the present study, we found a significant disruption of circadian metabolic regulation in a R6/2 mouse HD model in the late stage of disease. Daily circadian rhythms of activity, energy expenditure, respiratory exchange ratio and feeding were strongly attenuated in R6/2 mice. During the rest phase, R6/2 mice had a higher total activity, elevated energy expenditure and excessive water consumption compared to control mice. We also found that, in the late stage of disease, R6/2 mice had ghrelin axis deficiency as a result of low circulating ghrelin levels, in addition to down-regulation of the ghrelin receptor and several key signalling molecules in the hypothalamus, as well as a reduced responsiveness to exogenous peripheral ghrelin. We demonstrated that, in pre-symptomatic mice, responsiveness to ghrelin is preserved. Chronic ghrelin treatment efficiently increased lean body mass and decreased the energy expenditure and fat utilisation of R6/2 mice in the early stage of disease. In addition, ghrelin treatment was also effective in the normalisation of drinking behaviour and the rest activity of these mice. Ghrelin treatment could provide a novel therapeutic possibility for delaying disease progression; however, deficiency in ghrelin receptor expression could limit its therapeutic potential in the late stage of disease.


Assuntos
Grelina/metabolismo , Doença de Huntington/metabolismo , Animais , Composição Corporal , Ritmo Circadiano , Modelos Animais de Doenças , Ingestão de Alimentos , Metabolismo Energético , Feminino , Camundongos Transgênicos , Atividade Motora , Fenótipo
8.
Cell Rep ; 22(1): 175-188, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298420

RESUMO

Apolipoprotein M (apoM) is the carrier of sphingosine-1-phosphate (S1P) in plasma high-density lipoproteins. S1P is a bioactive lipid interacting with five receptors (S1P1-5). We show that lack of apoM in mice increases the amount of brown adipose tissue (BAT), accelerates the clearance of postprandial triglycerides, and protects against diet-induced obesity (i.e., a phenotype similar to that induced by cold exposure or ß3-adrenergic stimulation). Moreover, the data suggest that the phenotype of apoM-deficient mice is S1P dependent and reflects diminished S1P1 stimulation. The results reveal a link between the apoM/S1P axis and energy metabolism.


Assuntos
Tecido Adiposo Marrom/metabolismo , Apolipoproteínas M/metabolismo , Metabolismo Energético/fisiologia , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Triglicerídeos/metabolismo , Tecido Adiposo Marrom/citologia , Animais , Apolipoproteínas M/genética , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Esfingosina/genética , Esfingosina/metabolismo
9.
Mol Cell Endocrinol ; 449: 64-73, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27908836

RESUMO

GPR40 is generally known to signal through Gq. However, in transfected cells, certain synthetic agonists can make the receptor signal also through Gs and cAMP (Hauge et al., 2015). Here we find that, in colonic crypt cultures, the GLP-1 secretion induced by such Gq + Gs GPR40 agonists is indeed inhibited by blockers of both Gq and Gs and is eliminated by combining these. This in contrast to Gq-only GPR40 agonists which only are affected by the Gq inhibitor. Importantly, Gq-only GPR40 agonists in combination with low doses of selective synthetic agonists for Gs coupled receptors, e.g. GPR119 and TGR5 provide more than additive GLP-1 secretion both ex vivo and in vivo in mice. It is concluded that under physiological circumstances triglyceride metabolites, i.e. long chain fatty acids and 2-monoacyl glycerol plus bile acids, act synergistically through their respective receptors, GPR40, GPR119 and TGR5 to stimulate GLP-1 secretion robustly by combining Gq and Gs signaling pathways.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais , Administração Oral , Animais , Colo/metabolismo , Camundongos Endogâmicos C57BL
10.
Mol Cell Endocrinol ; 448: 108-121, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28390953

RESUMO

Pannexins (Panx's) are membrane proteins involved in a variety of biological processes, including cell death signaling and immune functions. The role and functions of Panx's in pancreatic ß-cells remain to be clarified. Here, we show Panx1 and Panx2 expression in isolated islets, primary ß-cells, and ß-cell lines. The expression of Panx2, but not Panx1, was downregulated by interleukin-1ß (IL-1ß) plus interferon-γ (IFNγ), two pro-inflammatory cytokines suggested to contribute to ß-cell demise in type 1 diabetes (T1D). siRNA-mediated knockdown (KD) of Panx2 aggravated cytokine-induced apoptosis in rat INS-1E cells and primary rat ß-cells, suggesting anti-apoptotic properties of Panx2. An anti-apoptotic function of Panx2 was confirmed in isolated islets from Panx2-/- mice and in human EndoC-ßH1 cells. Panx2 KD was associated with increased cytokine-induced activation of STAT3 and higher expression of inducible nitric oxide synthase (iNOS). Glucose-stimulated insulin release was impaired in Panx2-/- islets, and Panx2-/- mice subjected to multiple low-dose Streptozotocin (MLDS) treatment, a model of T1D, developed more severe diabetes compared to wild type mice. These data suggest that Panx2 is an important regulator of the insulin secretory capacity and apoptosis in pancreatic ß-cells.


Assuntos
Apoptose/efeitos dos fármacos , Conexinas/deficiência , Citocinas/farmacologia , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Conexinas/metabolismo , Técnicas de Silenciamento de Genes , Intolerância à Glucose/patologia , Humanos , Hiperglicemia/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Fator de Transcrição STAT3/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA