Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 29(2): 2431-2441, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726438

RESUMO

We demonstrate a wafer-level integration of a distributed feedback laser diode (DFB LD) and high-efficiency Mach-Zehnder modulator (MZM) using InGaAsP phase shifters on Si waveguide circuits. The key to integrating materials with different bandgaps is to combine direct wafer bonding of a multiple quantum well layer for the DFB LD and regrowth of a bulk layer for the phase shifter. Buried regrowth of an InP layer is also employed to define the waveguide cores for the LD and phase shifters on a Si substrate. Both the LD and phase shifters have 230-nm-thick lateral diodes, whose thickness is less than the critical thickness of the III-V compound semiconductor layers on the Si substrate. The fabricated device has a 500-µm-long DFB LD and 500-µm-long carrier-depletion InGaAsP-bulk phase shifters, which provide a total footprint of only 1.9 × 0.31 mm2. Thanks to the low losses of the silica-based fiber couplers, InP/Si narrow tapers, and the phase shifters, the fiber-coupled output power of 3.2 mW is achieved with the LD current of 80 mA. The MZM has a VπL of around 0.4 Vcm, which overcomes the VπL limit of typical carrier-depletion Si MZMs. Thanks to the high modulation efficiency, the device shows an extinction ratio of 5 dB for 50-Gbit/s NRZ signal with a low peak-to-peak voltage of 2.5 V, despite the short phase shifters and single-arm driving.

2.
Opt Express ; 29(16): 26082-26092, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614921

RESUMO

Ultrashort-distance optical interconnects are becoming increasingly important due to continuous improvements in servers and high-performance computers. As light sources in such interconnects, directly modulated semiconductor lasers with an ultrasmall active region are promising. In addition, using Si waveguides is important to provide low loss optical links with functions such as wavelength filtering and switching. In this paper, we demonstrate a wafer-scale heterogeneous integration of lambda-scale embedded active-region photonic-crystal (LEAP) lasers and Si waveguides, achieved through precise alignment. We numerically and experimentally demonstrated the coupling design between the LEAP lasers and Si waveguides; it is important to match propagation constants of Si waveguides and wavenumber of the optical cavity modes. The LEAP lasers exhibit an ultralow threshold current of 13.2-µA and 10-Gbit/s direct modulation. We also achieved the first data transmission using an optical link consisting of a LEAP laser, Si waveguide, and photodetector and obtained an averaged eye diagram at a bit rate of 10 Gbit/s with a bias current of 150 µA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA