RESUMO
Cancer-related metabolic features are in part maintained by hexokinase 2 upregulation, which leads to high levels of glucose-6-phosphate (G6P) and is needed to provide energy and biomass to support rapid proliferation. Using a humanized model of the yeast Saccharomyces cerevisiae, we explored how human hexokinase 2 (HK2) behaves under different nutritional conditions. At high glucose levels, yeast presents aerobic glycolysis through a regulatory mechanism known as catabolic repression, which exerts a metabolic adaptation like the Warburg effect. At high glucose concentrations, HK2 did not translocate into the nucleus and was not able to shift the metabolism toward a highly glycolytic state, in contrast to the effect of yeast hexokinase 2 (Hxk2), which is a crucial protein for the control of aerobic glycolysis in S. cerevisiae. During the stationary phase, when glucose is exhausted, Hxk2 is shuttled out of the nucleus, ceasing catabolic repression. Cells harvested at this condition display low glucose consumption rates. However, glucose-starved cells expressing HK2 had an increased capacity to consume glucose. In those cells, HK2 localized to mitochondria, becoming insensitive to G6P inhibition. We also found that the sugar trehalose-6-phosphate (T6P) is a human HK2 inhibitor, like yeast Hxk2, but was not able to inhibit human HK1, the isoform that is ubiquitously expressed in almost all mammalian tissues. In contrast to G6P, T6P inhibited HK2 even when HK2 was associated with mitochondria. The binding of HK2 to mitochondria is crucial for cancer survival and proliferation. T6P was able to reduce the cell viability of tumor cells, although its toxicity was not impressive. This was expected as cell absorption of phosphorylated sugars is low, which might be counteracted using nanotechnology. Altogether, these data suggest that T6P may offer a new paradigm for cancer treatment based on specific inhibition of HK2.
Assuntos
Hexoquinase , Fosfatos Açúcares , Animais , Humanos , Hexoquinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicólise , Glucose/metabolismo , MamíferosRESUMO
Trehalose on both sides of the bilayer is a requirement for full protection of membranes against stress. It was not known yet how trehalose, synthesized in the cytosol when dividing Saccharomyces cerevisiae cells are shifted from 28°C to 40°C, is transported to the outside and degraded when cells return to 28°C. According to our results, the lack of Agt1, a trehalose transporter, although had not affected trehalose synthesis, reduced cell tolerance to 51°C and increased lipid peroxidation. The damage was reversed when external trehalose was added during 40°C adaptation, confirming that the reason for the agt1Δ sensitivity is the absence of trehalose at the outside of the lipid bilayer. The 40-28°C condition caused cytosolic trehalase (Nth1) activation, reducing intracellular trehalose and, consequently, the survival rates after 51°C. Although lower than nth1Δ strain, cells deficient in acid trehalase (ath1Δ) maintained increased trehalose levels after 40°C-28°C shift, which conferred protection against 51°C. Both Ath1 and Agt1 were found into vesicles near to plasma membrane in response to stress. This suggests that Agt1 containing vesicles would fuse with the membrane under 40°C to transport part of the cytosolic trehalose to the outside. By a similar mechanism, Ath1 would reach the cell surface to hydrolyze the external trehalose but only when the stress would be over. Corroborating this conclusion, Ath1 activity in soluble cell-free extracts increased after 40°C adaptation but decreased when cells returned to 28°C. During 40°C, Ath1 is confined into vesicles, avoiding the cleavage of the outside trehalose.
Assuntos
Resposta ao Choque Térmico , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Simportadores/metabolismo , Trealase/metabolismo , Trealose/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Simportadores/genética , Trealase/genética , Trealose/farmacologiaRESUMO
This work aimed to study the effect of trehalose in protecting cells against Sod1 proteinopathy associated with amyotrophic lateral sclerosis (ALS). Humanized yeast cells in which native Sod1 was replaced by wild-type human Sod1 or an ALS mutant (WT-A4V Sod1 heterodimer) were used as the experimental model. Cells were treated with 10% trehalose (p/v) before or after the appearance of hSod1 proteinopathy induced by oxidative stress. In both conditions, trehalose reduced the number of cells with Sod1 inclusions, increased Sod1 activity, and decreased the levels of intracellular oxidation, demonstrating that trehalose avoids Sod1 misfolding and loss of function in response to oxidative stress. The survival rates of ALS Sod1 cells stressed in the presence of trehalose were 60% higher than in their absence. Treatment with trehalose after the appearance of Sod1 inclusions in cells expressing WT Sod1 doubled longevity; after 5 days, non-treated cells did not survive, but 15% of cells treated with sugar were still alive. Altogether, our results emphasize the potential of trehalose as a novel therapy, which might be applied preventively in ALS patients with a family history of the disease or after diagnosis in ALS patients who discover the disease following the first symptoms.
RESUMO
Different SOD1 proteoforms are implicated## in both familial and sporadic cases of Amyotrophic Lateral Sclerosis (ALS), an aging-associated disease that affects motor neurons. SOD1 is crucial to neuronal metabolism and health, regulating the oxidative stress response and the shift between oxidative-fermentative metabolism, which is important for astrocyte-neuron metabolic cooperation. Neurons have a limited capacity to metabolize methylglyoxal (MGO), a potentially toxic side product of glycolysis. MGO is highly reactive and can readily posttranslationally modify proteins, in a reaction known as glycation, impacting their normal biology. Here, we aimed to investigate the effect of glycation on the aggregation and toxicity of human SOD1WT (hSOD1WT). Cells with deficiency in MGO metabolism showed increased levels of hSOD1WT inclusions, displaying also reduced hSOD1WT activity and viability. Strikingly, we also found that the presence of hSOD1WT in stress granules increased upon MGO treatment. The treatment of recombinant hSOD1WT with MGO resulted in the formation of SDS-stable oligomers, specially trimers, and thioflavin-T positive aggregates, which can promote cell toxicity and TDP-43 pathology. Together, our results suggest that glycation may play a still underappreciated role on hSOD1WT and TDP-43 pathologies in sporadic ALS, which could open novel perspectives for therapeutic intervention.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase/metabolismo , Reação de Maillard , Óxido de Magnésio , Neurônios Motores/metabolismo , Proteínas de Ligação a DNA/metabolismoRESUMO
Among the familial forms of amyotrophic lateral sclerosis (fALS), 20% are associated with the Cu,Zn-superoxide dismutase (Sod1). fALS is characterized by the accumulation of aggregated proteins and the increase in oxidative stress markers. Here, we used the non-invasive bimolecular fluorescence complementation (BiFC) assay in human H4 cells to investigate the kinetics of aggregation and subcellular localization of Sod1 mutants. We also studied the effect of the different Sod1 mutants to respond against oxidative stress by following the levels of reactive oxygen species (ROS) after treatment with hydrogen peroxide. Our results showed that only 30% of cells transfected with A4VSod1 showed no inclusions while for the other Sod1 mutants tested (L38V, G93A and G93C), this percentage was at least 70%. In addition, we found that 10% of cells transfected with A4VSod1 displayed more than five inclusions per cell and that A4V and G93A Sod1 formed inclusions more rapidly than L38V and G93C Sod1. Expression of WTSod1 significantly decreased the intracellular oxidation levels in comparison with expression of fALS Sod1 mutants, suggesting the mutations induce a functional impairment. All fALS mutations impaired nuclear localization of Sod1, which is important for maintaining genomic stability. Consistently, expression of WTSod1, but not of fALS Sod1 mutants, reduced DNA damage, as measured by the comet assay. Altogether, our study sheds light into the effects of fALS Sod1 mutations on inclusion formation, dynamics, and localization as well as on antioxidant response, opening novel avenues for investigating the role of fALS Sod1 mutations in pathogenesis.
Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Modelos Biológicos , Mutação/genética , Multimerização Proteica , Superóxido Dismutase/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Humanos , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismoRESUMO
In some pathogens, trehalose biosynthesis is induced in response to stress as a protection mechanism. This pathway is an attractive target for antimicrobials as neither the enzymes, Tps1, and Tps2, nor is trehalose present in humans. Accumulation of T6P in Candida albicans, achieved by deletion of TPS2, resulted in strong reduction of fungal virulence. In this work, the effect of T6P on Tps1 activity was evaluated. Saccharomyces cerevisiae, C. albicans, and Candida tropicalis were used as experimental models. As expected, a heat stress induced both trehalose accumulation and increased Tps1 activity. However, the addition of 125 µM T6P to extracts obtained from stressed cells totally abolished or reduced in 50 and 60 % the induction of Tps1 activity in S. cerevisiae, C. tropicalis, and C. albicans, respectively. According to our results, T6P is an uncompetitive inhibitor of S. cerevisiae Tps1. This kind of inhibitor is able to decrease the rate of reaction to zero at increased concentrations. Based on the similarities found in sequence and function between Tps1 of S. cerevisiae and some pathogens and on the inhibitory effect of T6P on Tps1 activity observed in vitro, novel drugs can be developed for the treatment of infectious diseases caused by organisms whose infectivity and survival on the host depend on trehalose.