RESUMO
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
RESUMO
Oral ulcer is a frequent condition that commonly affects the tongue and in which 75% of the patients experience pain, and 25% report taste changes. The available therapies are not sufficiently effective for rapid and complete healing of tongue ulcers. We previously annotated the metabolites of Thymus satureioides (TS) aerial parts and reported their antioxidant, dermacosmeceutical and hepatoprotective properties. In this study, we performed in silico analysis, by applying network pharmacology and molecular docking, followed by experimental validation of the effect of local application of T. satureioides (TS) gel at two different concentrations on the healing of acetic-acid-induced tongue ulcer in rats. Salvianolic acid A, phloretic acid caffeate, rosmarinic acid, apigenin, and luteolin were the top bioactive ingredients of TS extract. Network pharmacology showed that the most relevant targets of these active constituents were TLR4, COX-2, MMP-9, TNF-α, and Caspase-3. Molecular docking showed that rosmarinic acid and salvianolic acid had a relatively strong binding affinity, compared to the other compounds, toward all the target proteins. Experimental validation in tongue ulcer model in rats and immunohistochemistry experiments showed that application of a gel containing TS extract (5 and 10%) was effective in healing the tongue ulcer via downregulation of COX-2, TNF-α, MMP-9, and Caspase-3. This study suggests that T. satureioides extract could act as a topical treatment for tongue ulcers by combating inflammation, apoptosis, and proteolysis. The possible treatment potential of some constituents including rosmarinic acid and salvianolic acid in oral ulcerations awaits further investigations to confirm their potency.
Assuntos
Metaloproteinase 9 da Matriz , Úlceras Orais , Humanos , Ratos , Animais , Ratos Wistar , Caspase 3 , Úlcera , Fator de Necrose Tumoral alfa , Proteólise , Simulação de Acoplamento Molecular , Úlceras Orais/tratamento farmacológico , Ciclo-Oxigenase 2 , Ácido Acético , Inflamação/tratamento farmacológico , Apoptose , Ácido RosmarínicoRESUMO
Zaitra, Thymus satureioides, is an aromatic plant with a long history of use in traditional medicine. In this study, we assessed the mineral composition, nutritional value, phytocontents, and dermatological properties of the aerial parts of T. satureioides. The plant contained high contents of calcium and iron, moderate levels of magnesium, manganese, and zinc, and low contents of total nitrogen, total phosphorus, total potassium, and copper. It is rich in several amino acids, including asparagine, 4-hydroxyproline, isoleucine, and leucine, and the essential amino acids account for 60.8%. The extract contains considerable amounts of polyphenols and flavonoids (TPC = 118.17 mg GAE/g extract and TFC = 32.32 mg quercetin/g extract). It also comprises 46 secondary metabolites, identified through LC-MS/MS analysis, belonging to phenolic acids, chalcones, and flavonoids. The extract elicited pronounced antioxidant activities, inhibited the growth of P. aeruginosa (MIC = 50 mg/mL), and reduced biofilm formation by up to 35.13% using the » sub-MIC of 12.5 mg/mL. Moreover, bacterial extracellular proteins and exopolysaccharides were diminished by 46.15% and 69.04%, respectively. Likewise, the swimming of the bacterium was impaired (56.94% decrease) in the presence of the extract. In silico, skin permeability and sensitization effects revealed that out of the 46 identified compounds, 33 were predicted to be exempt from any skin sensitivity risk (Human Sensitizer Score ≤ 0.5), while extensive skin permeabilities were observed (Log Kp = -3.35--11.98 cm/s). This study provides scientific evidence about the pronounced activities of T. satureioides, supports its traditional uses, and promotes its utilization in the development of new drugs, food supplements, and dermatological agents.
Assuntos
Extratos Vegetais , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida , Flavonoides/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antioxidantes/química , Minerais/análise , Proteínas de Bactérias , Valor NutritivoRESUMO
In this study, we examined the sub-acute toxicity of quercetin and ferulic acid and evaluated their effects on protein, cholesterol, and estrogen levels in vivo. Six groups of female Wistar rats were fed by gavage. The first and second groups represent the positive (Clomiphene citrate 10 mg/kg) and negative (NaCl 0.9%) control groups, while the other groups received quercetin and ferulic acid at doses of 5 and 10 mg/kg/day for 28 days. The sub-acute toxicity was monitored by examining the weights, biochemical parameters (AST, ALT, ALP, urea, and CREA), and histological changes in the kidneys and liver of the treated animals. Furthermore, the in vivo estrogenic effects were studied in terms of the serum and ovarian cholesterol levels, serum estradiol, and uterine proteins. Finally, Docking studies were conducted to evaluate the binding affinity of quercetin and ferulic acid for alpha and beta estrogen receptors. Results showed that both compounds were devoid of any signs of nephrotoxicity or hepatotoxicity. Additionally, quercetin and ferulic acid caused significant estrogenic effects evidenced by an increase of 8.7 to 22.48% in serum estradiol, though to a lesser amount than in the reference drug-treated group (64.21%). Moreover, the two compounds decreased the serum cholesterol levels (12.26-32.75%) as well as the ovarian cholesterol level (11.9% to 41.50%) compared to the negative control. The molecular docking in estrogen alpha and estrogen beta active sites showed high affinity of quercetin (-10.444 kcal/mol for estrogen alpha and -10.662 kcal/mol for estrogen beta) and ferulic acid (-6.377 kcal/mol for estrogen alpha and -6.3 kcal/mol for estrogen beta) to these receptors. This study provides promising insights into the potential use of quercetin as a therapeutic agent for the management of female fertility issues.
Assuntos
Estrogênios , Quercetina , Ratos , Animais , Feminino , Quercetina/farmacologia , Ratos Wistar , Simulação de Acoplamento Molecular , Estrona , Estradiol , ColesterolRESUMO
For many decades, natural resources have traditionally been employed in skin care. Here, we explored the phytochemical profile of the aqueous and ethanolic leaf extracts of Cupressus arizonica Greene and assessed their antioxidant, antiaging and antibacterial activities in vitro. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis led to the tentative identification of 67 compounds consisting mainly of phenolic and fatty acids, diterpene acids, proanthocyanidins and flavonoid and biflavonoid glycosides. The aqueous extract demonstrated substantial in vitro antioxidant potential at FRAP and DPPH assays and inhibited the four target enzymes (collagenase, elastase, tyrosinase, and hyaluronidase) engaged in skin remodeling and aging with IC50 values close to those of the standard drugs. Moreover, the aqueous extract at 25 mg/mL suppressed biofilm formation by Pseudomonas aeruginosa, a bacterial pathogen causing common skin manifestations, and decreased its swarming and swimming motilities. In conclusion, C. arizonica leaves can be considered a promising candidate for potential application in skin aging.
Assuntos
Cosmecêuticos , Cupressaceae , Cupressus , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Extratos Vegetais/químicaRESUMO
Plant extracts and their individual components have been used to manage skin aging for several decades. Recently, the discovery of new natural bioactive agents, that not only enhance the skin health but also offer protection against various deleterious factors, such as free radicals, ultraviolet radiation, and microbial infections, has been a potential target by many researchers. The aim of the current work was to investigate the phytochemical profile of an ethanol bark extract from Pseudobombax ellipticum, and to evaluate its antioxidant, antiaging and antibacterial activities in vitro. Molecular docking and molecular dynamics studies were adopted to estimate and confirm the binding affinity of several compounds and explain their binding pattern at the binding sites of four target enzymes associated with skin aging, namely collagenase, elastase, tyrosinase, and hyaluronidase. HPLC-MS/MS analysis led to the tentative identification of 35 compounds comprising phenolic acids, and their glycosides, procyanidins and flavonoid glycosides. The extract demonstrated a promising in vitro antioxidant activity in the DPPH and FRAP assays (IC50 56.45 and 15.34 µg/mL, respectively), and was able to inhibit the aforementioned key enzymes with comparable results to the reference drugs. In addition, the extract (6.25 mg/mL) inhibited the biofilm production of Pseudomonas aeruginosa and diminished the swimming and swarming motilities. The docked compounds revealed appreciable binding energy with the tested enzymes and were stable throughout the molecular dynamic simulations. In view of this data, P. ellipticum bark can be regarded as a good candidate for prospective application in derma-cosmeceutical preparations.
RESUMO
Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 µg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 µg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.
RESUMO
Herein, we isolated three triterpenoid saponins from the methanol extract of the fruit pulp of argan. The structures of the identified compounds were determined using comprehensive NMR spectroscopy analyses (1H, 13C NMR, COSY, TOCSY, ROESY, and HSQC), combined with mass spectroscopy. Gas chromatography (GC) was utilized to determine the monosaccharide contents after the samples underwent methanolysis and their glycoside configuration was proved via their trimethylsilyl derivatives. Furthermore, the methanol extract of the fruit pulp and its n-butanol fraction were evaluated for their antioxidant properties via DPPH, ABTS, and FRAP assays, antidiabetic activity using α-amylase and α-glucosidase inhibition activities, and antibacterial properties utilizing microdilution and antibiofilm assays. Compared to the crude methanol extract, our results showed that the n-butanol fraction exhibited more potent antioxidant activity and antibacterial potential against Staphylococcus aureus, Escherichia coli, Salmonella typhi, Enterococcus faecalis, and Pseudomonas aeruginosa (MIC = 12.5-50 mg/mL); while no effect on the bacterial biofilm was observed. The methanol extract was more effective in inhibiting α-glucosidase (EC50 = 0.15 mg/mL), however, the n-butanol fraction elicited strong α-amylase inhibition (EC50 = 0.49 mg/mL). These findings suggest that the fruit pulp of argan could serve as a potential source of phytochemicals suitable for the treatment of diabetes and its related complications.
RESUMO
Introduction: Cubeb, Piper cubeba L., has been used for centuries in traditional medicine and culinary practices, with a wide range of biological and pharmacological activities. Objective: Herein, we determined the phytochemical profile, mineral, fatty acids, and amino acid contents of P. cubeba berries and assessed the dermacosmeceutical properties of their water extract and essential oil (EO). These included assessing their antioxidant and antibacterial activities as well as their in vitro inhibitory activities against tyrosinase and elastase enzymes. In addition, molecular docking and molecular dynamics studies were performed on the major identified compounds of the EO. Results and discussion: A total of forty-three compounds belonging to organic acids, phenolic acids and flavonoids were found in the water extract, while 36 volatile compounds were identified in the EO with Z-isoeugenol, dihydroeugenol, ß-pinene, E-caryophyllene, and 1,8-cineole as major constituents. The berries were found to be rich in sodium and iron, have moderate zinc content along with low contents of total nitrogen, phosphorus, and potassium. Amino acid analysis revealed a considerable concentration of isoleucine and phenylalanine, whereas 11,14,17-eicosatrienoic acid and linoleic acid were identified as the major fatty acids. In the DPPH and FRAP assays, the water extract elicited considerable antioxidant activity compared to the reference compounds. Enzyme inhibitory assays revealed that the EO had a potential to inhibit tyrosinase and elastase enzymes with IC50 values of 340.56 and 86.04 µg/mL, respectively. The water extract and EO completely inhibited the bacterial growth at MIC of 50 mg/mL and 20%, respectively. At sub-MIC concentrations, the extract and the EO substantially reduced the biofilm formation by up to 26.63 and 77.77%, respectively, as well as the swimming and swarming motilities in a dose-dependent manner. Molecular docking and molecular dynamics showed that the five main components of P. cubeba EO could be the major contributors to the elastase and tyrosinase inhibitory effect. Conclusion: This study emphasizes the promising potential of P. cubeba as a valuable source of natural compounds that can be utilized for the development of innovative pharmaceuticals, dietary supplements, and dermacosmeceutical agents.
RESUMO
Petroselinum sativum, known as parsley, is a fragrant herb that possesses a rich heritage of utilization in traditional medicinal practices. In this study, we annotated the phytocontents of the aqueous and ethanolic extracts of P. sativum and investigated their antioxidant, cytoprotective, antiaging, wound healing, and antibacterial activities. LC-MS/MS analysis of both extracts revealed the presence of 47 compounds belonging to diverse groups including organic acids, phenolic acids, and flavonoids. By MTT assay, the extracts were fully biocompatible on immortalized human keratinocytes (HaCaT) while they inhibited intracellular ROS formation (DCFDA assay) and prevented GSH depletion (DTNB assay) upon UVA exposure. In addition, the extracts were potent in inhibiting the in vitro activities of skin-related enzymes mainly elastase, tyrosinase, collagenase and hyaluronidase. Using the scratch assay, P. sativum aqueous extract significantly enhanced wound closure when compared to untreated HaCaT cells. Moreover, both extracts inhibited Pseudomonas aeruginosa's growth, reduced biofilm formation, and impaired the swimming and swarming motilities. Also, the aqueous extract was able to inhibit the production of bacterial pigments on plates. These findings strongly suggest the usefulness of P. sativum as a source of phytochemicals suitable for dermo-cosmeceutical applications.
RESUMO
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Assuntos
Anti-Infecciosos , Flavanonas , Flavanonas/uso terapêutico , Flavanonas/farmacocinética , Antioxidantes/farmacologia , Flavonoides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêuticoRESUMO
Parsley (Petroselinum sativum Hoffm.) is renowned for its ethnomedicinal uses including managing pain, wound, and dermal diseases. We previously highlighted the estrogenic and anti-inflammatory properties of parsley and profiled the phytochemistry of its polyphenolic fraction using HPLC-DAD. To extend our investigation, we here characterized the phytochemical composition of the hydro-ethanolic extract using LC-MS/MS and GC-MS upon silylation, and evaluated the antioxidant, analgesic, antimicrobial, and wound healing activities of its hydro-ethanolic and polyphenolic fraction. The antioxidant property was assessed using FRAP, DPPH, and TAC assays. The antimicrobial activity was tested against four wound infectious microbes (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans). The analgesic effect was studied using acetic acid (counting the number of writhes) and formalin (recording the licking and biting times) injections while the wound healing activity was evaluated using burn model in vivo. The LC-MS/MS showed that the hydro-ethanolic contains four polyphenols (oleuropein, arbutin, myricetin, and naringin) while GC-MS revealed that it contains 20 compounds including malic acid, D-glucose, and galactofuranoside. The hydro-ethanolic (1000 mg/kg) decreased abdominal writhes (38.96%) and licking time (37.34%). It also elicited a strong antioxidant activity using DPPH method (IC50 = 19.38 ± 0.15 µg/mL). Polyphenols exhibited a good antimicrobial effect (MIC = 3.125-12.5 mg/mL). Moreover, both extracts showed high wound contraction by 97.17% and 94.98%, respectively. This study provides evidence that P. sativum could serve as a source of bio-compounds exhibiting analgesic effect and their promising application in mitigating ROS-related disorders, impeding wound infections, and enhancing burn healing.
RESUMO
The phytoconstituents of the aqueous extract from Syzygium jambos L. (Alston) leaves were defined using HPLC-PDA-MS/MS and the antioxidant, anti-aging, antibacterial, and anti-biofilm activities of the extract were in silico and in vitro investigated. The antioxidant activities were performed using in vitro DPPH and FRAP assays as well as H2-DCFDA assay in HaCaT cells in which oxidative stress was induced by UVA radiation. Anti-aging activity was tested in vitro, using aging-related enzymes. The antibacterial, anti-biofilm and inhibitory effects on bacterial mobilities (swarming and swimming) were assessed against Pseudomonas aeruginosa. Results showed that S. jambos aqueous extract contained 28 phytochemicals belonging to different metabolite classes, mainly phenolic acids, gallic acid derivatives, flavonoids, and ellagitannins. Mineral content analysis showed that S. jambos leaves contained moderate amounts of nitrogen, potassium, manganese, magnesium, and zinc, relatively low amounts of phosphorus and copper, and high concentration of calcium and iron. The extract displayed strong antioxidant activities in vitro and inhibited UVA-induced oxidative stress in HaCaT cells. Docking the major compounds identified in the extract into the four main protein targets involved in skin aging revealed an appreciable inhibitory potential of these compounds against tyrosinase, elastase, hyaluronidase, and collagenase enzymes. Moreover, molecular dynamic simulations were adopted to confirm the binding affinity of some selected compounds towards the target enzymes. The extract exhibited pronounced in vitro anti-aging effects, compared to kojic acid and quercetin (the reference compounds). It also inhibited the growth of P. aeruginosa, counteracted its ability to form biofilm, and impeded its swarming and swimming mobilities. Altogether, these findings strongly propose S. jambos leaves as a promising source of bioactive metabolites for the development of natural cosmeceutical and dermatological agents.
RESUMO
Plant Growth-Promoting Rhizobacteria (PGPR) have attracted much attention in agriculture biotechnology as biological inputs to sustain crop production. The present study describes a halotolerant phosphate solubilizing bacterium associated with quinoa plant roots. Based on a metabolic screening, one bacterial isolate, named QA2, was selected and screened for PGPR traits. This isolate solubilized both inorganic phosphate and zinc, produced indole-3-acetic acid, ammonia, hydrogen cyanide, cellulase, and (to be deleted) protease, and induced biofilm formation. We demonstrated that QA2 exhibited both antimicrobial and ion metabolism activities and tolerated high salt concentration at up to 11% NaCl. Genotyping analyses, using 16S rRNA and chaperonin cpn60 genes, revealed that QA2 belongs to the species of Bacillus velezensis. Using the quinoa model cultivated under a saline condition, we demonstrated that QA2 promoted plant growth and mitigated the saline irrigation effects. Analysis of harvested plants revealed that QA2 induced a significant increase of both leaf chlorophyll index by 120.86% (p < 0.05) and P uptake by 41.17% (p < 0.05), while the content of Na+ was drastically decreased. Lastly, a bibliometric data analysis highlighted the panoramic view of studies carried out so far on B. velezensis strains. Our investigation presents a holistic view of the potential application of B. velezensis as a biological inoculant to promote plant growth, control pathogen attacks, and mitigate the salinity effect of quinoa plants. Further investigations are still needed to demonstrate these effects in field conditions.
RESUMO
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
RESUMO
Growing concern for public health has increased the need to change the paradigm towards a healthcare system that advocates holistic practices while reducing adverse effects. Herbal therapy is becoming an integral part of the therapeutic arsenal, and several successful plant-derived compounds/molecules are being introduced into the market. The medicinal plants belonging to the genus Thymus are among the most important species within the Lamiaceae family. One of them is Thymus algeriensis which is mainly distributed in the Mediterranean region. For a long time, this species has been used in traditional medicine to treat several disorders and diseases including inflammation, diabetes, rheumatism, digestive, and respiratory affections. This review describes the traditional uses, phytochemical composition, and biological and pharmacological activities of T. algeriensis extracts. Data were obtained using electronic databases such as SciFindern, ScienceDirect, Scopus, and Web of Science. Several plant-based extracts and a broad spectrum of identified secondary metabolites were highlighted and discussed with respective activities and modes of action. T. algeriensis represents a promising natural resource for the pharmaceutical industry mainly for antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. Considering these findings, more research is needed to transmute the conventional uses of T. algeriensis into scientifically sound information. Moreover, extensive preclinical, clinical, toxicological, and pharmacokinetic trials on this species and its derivatives compounds are required to underpin the mechanisms of action and ensure its biosafety and efficiency. This comprehensive review provides a scientific basis for future investigations on the use of T. algeriensis and derived compounds in health maintenance and promotion and disease prevention.
Assuntos
Plantas Medicinais , Thymus (Planta) , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Piper cubeba L.f. (Piperaceae), known as cubeb, is a popular traditional herbal medicine used for the treatment of many diseases, especially digestive and respiratory disorders. The plant is rich in essential oil, found mainly in fruits, and this makes it economically important. Many traditional utilizations have been also validated from the plant and its isolated compounds owing to their antioxidant, antibacterial, anti-inflammatory and anticancer effects. These biological activities are attributed to the phytochemicals (phenolic compounds, lignans and alkaloids) and the essential oil of the plant. The present work aims to provide an up-to-date review on the traditional uses, phytochemistry and pharmacology of the plant and discusses the future perspectives to promote its valorization for nutritional- and health-promoting effects.
RESUMO
Caper (Capparis spinosa L.) is a perennial shrub of the family Capparaceae, endemic to circum-Mediterranean countries. Caper carries a renowned nutritional value, especially in terms of vitamins and antioxidants related to the occurrence of flavonoids, alkaloids, and glucosinolates as main secondary metabolites. Caper extracts have also shown to display antibacterial, antifungal, analgesic, antitumor, hepatoprotective, antioxidant, anti-inflammatory, and neuroprotective effects which correlate the uses of the plant in folk medicine against both metabolic and infectious diseases. The present review aims to provide exhaustive phytochemistry and pharmacological properties survey on Caper constituents. Attention has also been given to the nutritional values and traditional uses of main organs to pinpoint research gaps for future investigations on the plant.
RESUMO
We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 µg/mL in the DPPH assay and 18.32 µg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.
Assuntos
Cosmecêuticos , Olacaceae , Animais , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Cosmecêuticos/metabolismo , Cosmecêuticos/farmacologia , Glicosídeos/farmacologia , Olacaceae/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em TandemRESUMO
The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal potential of six extracts (three aqueous and three hydroalcoholic (MeOH/H2O, 20/80 (v/v)) from Atriplex halimus (leaves), Salvia rosmarinus (leaves) and Cuminum cyminum (seeds) to control nymphs and adult females of D. opuntiae under laboratory and greenhouse conditions. Out of the tested samples, A. halimus aqueous extract showed the highest activity, inducing mortality rates of 67.04% (after 4 days) and 85% (after 8 days) on nymphs and adult females of D. opuntiae, respectively, at a concentration of 5% under laboratory conditions. It also showed the highest mortality rate of nymphs with 100% (4 days after application) and 83.75% of adult females (7 days after the second application) at a concentration of 5% when combined with black soap at 10 g/L under greenhouse conditions. The difference in the toxicity of plant species of the study was correlated with their saponin content. A total of 36 of these triterpene glucosides were suggested after a comprehensive LC-MSn profiling of the most active extract, A. halimus, in addition to phytoecdysones and glycosylated phenolic acids and flavonoids. These findings provided evidence that the aqueous leaf extract of A. halimus could be incorporated in the management of the wild cochineal as an alternative to chemical insecticides.