Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(2): 29, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302633

RESUMO

Progesterone, a female sex steroid hormone, is highly lipophilic, leading to poor oral bioavailability. This study aimed to develop a progesterone bilosome system to enhance its oral bioavailability and retain it longer in the body. Progesterone vesicles were formulated with bile salts by thin film hydration method to prevent enzymatic and bile acid degradation. The Box-Behnken experimental design was used to statistically optimize progesterone bilosomes by checking the effect of phosphatidylcholine, cholesterol, and sodium deoxycholate on vesicle size, zeta potential, and entrapment efficiency. The optimum batch showed 239.5 nm vesicle size, -28.2 mV zeta potential and 84.08% entrapment efficiency, respectively, which were significantly affected by phosphatidylcholine and cholesterol concentration. The successful incorporation of progesterone in the system was evident from ATR-FTIR analysis that revealed no sharp progesterone peaks in bilosomes. TEM analysis confirmed the spherical structure and uniform bilosome vesicles. Furthermore, the in vitro drug release of progesterone bilosomes revealed a sustained pattern exhibiting 90% drug release in 48 h. The pharmacokinetic study in female ovariectomized Wistar rats confirmed the 4.287- and 9.75-fold enhanced oral bioavailability of the progesterone bilosomes than marketed capsules and progesterone API, respectively. Therefore, progesterone bilosome formulation can be further explored for improved oral administration in chronic treatments.


Assuntos
Lipossomos , Progesterona , Ratos , Animais , Feminino , Lipossomos/química , Ratos Wistar , Disponibilidade Biológica , Administração Oral , Colesterol/química , Fosfatidilcolinas , Tamanho da Partícula
2.
Angew Chem Int Ed Engl ; 53(31): 8037-40, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24706570

RESUMO

The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Peptídeos/química , Sequência de Aminoácidos , Antígenos de Bactérias , Termodinâmica
3.
Int J Pharm ; 643: 123250, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37481096

RESUMO

Progesterone is a natural steroidal sex hormone in the human body, mainly secreted through the adrenal cortex, ovary, and placenta. In humans, progesterone is essential for endometrium transformation in the uterus at the time of ovulation and maintenance of pregnancy. When the body cannot produce enough progesterone for specific ailments, it is administered via different routes such as oral, vaginal, transdermal, topical, parental, and intranasal routes. Although progesterone is commercially available in multiple conventional formulations, low solubility, less permeability and extensive hepatic first-pass metabolism are the major constraints to its delivery. These challenges can be overcome substantially by formulating progesterone into novel delivery systems like lipid carriers, polymeric carriers, hydrogels, several nanocarriers, depot and controlled release systems. Various research papers and patents have been published in the last two decades on progesterone delivery systems; clinical studies were conducted to establish safety and efficacy. This review is focused on the pharmacodynamic and pharmacokinetic parameters of progesterone, its delivery constraints, and various advanced delivery systems of progesterone.


Assuntos
Progesterona , Útero , Gravidez , Feminino , Humanos , Esteroides , Endométrio , Vagina
4.
Biochemistry ; 51(14): 3092-9, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22448726

RESUMO

The fibrillar deposition of serum amyloid A (SAA) has been linked to the disease amyloid A (AA) amyloidosis. We have used the SAA isoform, SAA2.2, from the CE/J mouse strain, as a model system to explore the inherent structural and biophysical properties of SAA. Despite its nonpathogenic nature in vivo, SAA2.2 spontaneously forms fibrils in vitro, suggesting that SAA proteins are inherently amyloidogenic. However, whereas the importance of the amino terminus of SAA for fibril formation has been well documented, the influence of the proline-rich and presumably disordered carboxy terminus remains poorly understood. To clarify the inherent role of the carboxy terminus in the oligomerization and fibrillation of SAA, we truncated the proline-rich final 13 residues of SAA2.2. We found that unlike full-length SAA2.2, the carboxy-terminal truncated SAA2.2 (SAA2.2ΔC) did not oligomerize to a hexamer or octamer, but formed a high molecular weight soluble aggregate. Moreover, SAA2.2ΔC also exhibited a pronounced decrease in the rate of fibril formation. Intriguingly, when equimolar amounts of denatured SAA2.2 and SAA2.2ΔC were mixed and allowed to refold together, the mixture formed an octamer and exhibited rapid fibrillation kinetics, similar to those for full-length SAA2.2. These results suggest that the carboxy terminus of SAA, which is highly conserved among SAA sequences in all vertebrates, might play important structural roles, including modulating the folding, oligomerization, misfolding, and fibrillation of SAA.


Assuntos
Amiloide/química , Dobramento de Proteína , Proteína Amiloide A Sérica/química , Amiloide/metabolismo , Animais , Cinética , Camundongos , Microscopia de Força Atômica , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
5.
PLoS One ; 8(6): e64974, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750222

RESUMO

The fibrillation of Serum Amyloid A (SAA) - a major acute phase protein - is believed to play a role in the disease Amyloid A (AA) Amyloidosis. To better understand the amyloid formation pathway of SAA, we characterized the oligomerization, misfolding, and aggregation of a disease-associated isoform of human SAA - human SAA1.1 (hSAA1.1) - using techniques ranging from circular dichroism spectroscopy to atomic force microscopy, fluorescence spectroscopy, immunoblot studies, solubility measurements, and seeding experiments. We found that hSAA1.1 formed alpha helix-rich, marginally stable oligomers in vitro on refolding and cross-beta-rich aggregates following incubation at 37°C. Strikingly, while hSAA1.1 was not highly amyloidogenic in vitro, the addition of a single N-terminal methionine residue significantly enhanced the fibrillation propensity of hSAA1.1 and modulated its fibrillation pathway. A deeper understanding of the oligomerization and fibrillation pathway of hSAA1.1 may help elucidate its pathological role.


Assuntos
Multimerização Proteica , Proteína Amiloide A Sérica/química , Humanos , Metionina , Modelos Moleculares , Isoformas de Proteínas/química , Redobramento de Proteína , Estrutura Secundária de Proteína , Solubilidade
6.
Macromol Biosci ; 10(1): 68-81, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19780061

RESUMO

Multivalent, glycopolymer inhibitors designed for the treatment of disease and pathogen infection have shown improvements in binding correlated with general changes in glycopolymer architecture and composition. We have previously demonstrated that control of glycopolypeptide backbone extension and ligand spacing significantly impacts the inhibition of the cholera toxin B subunit pentamer (CT B(5)) by these polymers. In the studies reported here, we elucidate the role of backbone charge and linker length in modulating the inhibition event. Peptides of the sequence AXPXG (where X is a positive, neutral or negative amino acid), equipped with the alkyne functionality of propargyl glycine, were designed and synthesized via solid-phase peptide synthetic methods and glycosylated via Cu(I)-catalyzed alkyne-azide cycloaddition reactions. The capacity of the glycopeptides to inhibit the binding of the B(5) subunit of cholera toxin was evaluated. These studies indicated that glycopeptides with a negatively charged backbone show improved inhibition of the binding event relative to the other glycopeptides. In addition, variations in the length of the linker between the peptide and the saccharide ligand also affected the inhibition of CT by the glycopeptides. Our findings suggest that, apart from appropriate saccharide spacing and polypeptide chain extension, saccharide linker conformation and the systematic placement of charges on the polypeptide backbone are also significant variables that can be tuned to improve the inhibitory potencies of glycopolypeptide-based multivalent inhibitors.


Assuntos
Toxina da Cólera/antagonistas & inibidores , Cólera/tratamento farmacológico , Desenho de Fármacos , Glicopeptídeos/química , Fragmentos de Peptídeos/síntese química , Polímeros/química , Sequência de Aminoácidos , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Dicroísmo Circular , Glicopeptídeos/síntese química , Glicopeptídeos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polímeros/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
7.
Macromolecules ; 42(1): 3-13, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21494423

RESUMO

Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer-drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for the targeted and controlled delivery of drugs, and polymeric sequestrants take advantage of their lack of solubility for the sequestration of target molecules in vivo. In more recent studies reviewed in greater detail here, the properties of polymers that distinguish them from small-molecule drugs, such as their high molecular weight and their ability to display multiple pendant moieties, have been specifically exploited for activating cellular targets or inhibiting the binding of pathogens. The elucidation of relevant structure-function relationships in investigations of this kind has relied on the combination of living polymerization methods with chemical conjugation methods, and protein engineering methods have shown increasing potential in the manipulation of architectural features of such polymer therapeutics. Garnering a detailed understanding of the various mechanisms by which multivalent polymers engage biological targets is certain to expand the role of polymers as therapeutics, by enabling highly specific activities of designed polymers in the biological environment.

8.
Macromolecules ; 40(20): 7103-7110, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19169374

RESUMO

Many recognition events important in biology are mediated via multivalent interactions between relevant oligosaccharides and multiple saccharide receptors present on lectins, viruses, toxins, and cell surfaces. Because of the important role played by protein-carbohydrate interactions in these pathogenic recognition events and in other human diseases, considerable effort has been devoted toward the development of multivalent polymeric ligands for carbohydrate-binding proteins. In this work, we report the synthesis of new polypeptide-based glycopolymers produced via a combination of protein engineering and chemical methods. These methodologies permit control over the number and the spacing of saccharides on the scaffold, as well as the conformation of the polymer backbone, and allow a more purposeful design of polymers for manipulation of multivalent binding events. Two families of galactose-bearing glycopolypeptides with random coil conformations, [(AG)(3)PEG](y) (y = 10 and 16) and {[(AG)(2)PSG](2)[(AG)(2)PEG][(AG)(2)PSG](2)}(y) (y = 6), have been synthesized. The carboxylic acid functionality of the glutamic acid residues allowed subsequent modification with amino-saccharides to yield the desired glycopolypeptides; selective placement of the glutamic acid group permitted investigation of the effects of multivalency and saccharide spacing on toxin inhibition. In addition, a family of galactose-functionalized PGA-based glycopolymers of varying molecular weights was also synthesized to compare the effects of backbone flexibility and hydrodynamic volume, relative to the recombinant glycopolypeptides, on toxin inhibition. Glycopolypeptides were characterized via (1)H NMR, MALDI-TOF mass spectrometry, SDS-PAGE analysis, and spectrophotometric assays. They were tested as inhibitors of the binding of the cholera toxin B subunit via direct enzyme-linked assays. The data from these experiments confirm the relevance of appropriate saccharide spacing on controlling the binding event and also indicate the influence of chain extension in improving inhibition.

9.
Biomacromolecules ; 7(2): 491-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16471921

RESUMO

Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.


Assuntos
Substâncias Macromoleculares/química , Peptídeos/química , Polilisina/química , Dióxido de Silício/síntese química , Dicroísmo Circular/métodos , Tamanho da Partícula , Conformação Proteica , Estrutura Secundária de Proteína , Sensibilidade e Especificidade , Dióxido de Silício/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA