RESUMO
Superparamagnetic iron oxide nanoclusters (SPIONs) modified with pH (low) insertion peptide (pHLIP) could be advantageous for magnetic resonance imaging (MRI) diagnosis of liver tumors at the early stage due to their unique responsiveness to the tumor acidic microenvironment when tumor markers are unknown. However, many critical aspects including the effectiveness of selective MRI in liver tumors, types of delivery and the potential safety profile in cirrhosis need to be fully evaluated. In this study, we report the evaluation of non-targeting, C- or N-pHLIP modified SPIONs as the contrast agent for selective MRI of liver tumors and their potential toxicity profile in cirrhosis. It was found that N-pHLIP modified SPIONs did not result in the loss of liver tumor in the T2-weight MRI but provided additional dynamic details of tumor structures that would enhance the diagnosis of liver tumors at a small size below 8 mm. In addition, an enhanced safety profile was found for N-pHLIP modified SPIONs with almost fully recoverable impact in cirrhosis. In contrast, the poly-d-lysine assembled SPIONs and C-terminus linked pHLIP SPIONs had non-tumor specific MRI contrast enhancement and potential safety risks in cirrhosis due to the iron overload post injection. All these results implied the promising potential of N-terminus linked pHLIP SPIONs as an MRI contrast agent for the diagnosis of liver tumors.
RESUMO
Superparamagnetic iron oxide nanoparticles (SPION) are contrast agents used for noninvasive tumor magnetic resonance imaging (MRI). SPION with active targeting by tumor-specific ligands can effectively enhance the MRI sensitivity and specificity of tumors. However, the challenge remains when the tumor specific markers are yet to be determined, especially in the case of early tumor detection. In this study, the effectiveness of pH-responsive SPION via a pH low insertion peptide (pHLIP) to target tumor acidic microenvironments was investigated. Polylysine polymers were first successfully modified with pHLIP to have the pH-responsive capability. SPION pHLIP nanoclusters of 64, 82, 103, and 121nm size were then assembled by the pH-responsive polymers in a size-controlled manner. The pH-responsive SPION nanoclusters of the 64nm size exhibited the most effective pH-responsive retention in cells and tumor selective imaging in MRI. More importantly, the unique contrast enhancement of tumor inner core by the pH-responsive SPION in three different tumor models demonstrated the clinical potential to target tumor acidic microenvironment through pHLIP for tumor early detection and diagnosis by MRI. STATEMENT OF SIGNIFICANCE: Detection and diagnosis of tumors at early stage are critical for the improvement of the survival rate of cancer patients. However, the challenge remains when the tumor specific markers are yet to be determined, especially in early tumor detection. pH low insertion peptide (pHLIP) has been used as a specific ligand to target the tumor acidic microenvironment for tumors at early and metastatic stages. Superparamagnetic iron nanoparticles (SPION) are contrast enhancing agents used in the noninvasive magnetic resonance imaging for tumors. This research has demonstrated that pH-responsive pHLIP nanoclusters of SPION were able to target different tumors and facilitate the noninvasive diagnosis of tumors by MRI.