Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36984943

RESUMO

The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration for integration into a complete fully optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip devices is dependent on the support of a laboratory framework. In this paper, a demonstrator platform for routine laboratory analysis is designed and built, which fully integrates a number of technologies into a single device with multiple domains such as fluidics, electronics, pneumatics, hydraulics, and photonics. This facilitates the delivery of breakthroughs in research, by incorporating all physical requirements into a single device. To highlight this proposed approach, this demonstrator microsystem acts as a fully integrated biochemical assay reaction system. The resulting design determines enzyme kinetics in an automated process and combines reservoirs, three-dimensional fluidic channels, optical sensing, and electronics in a low-cost, low-power and portable package.

2.
Biomimetics (Basel) ; 3(3)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31105238

RESUMO

Soft robots are a new class of systems being developed and studied by robotics scientists. These systems have a diverse range of applications including sub-sea manipulation and rehabilitative robotics. In their current state of development, the prevalent paradigm for the control architecture in these systems is a one-to-one mapping of controller outputs to actuators. In this work, we define functional blocks as the physical implementation of some discrete behaviors, which are presented as a decomposition of the behavior of the soft robot. We also use the term 'stacking' as the ability to combine functional blocks to create a system that is more complex and has greater capability than the sum of its parts. By stacking functional blocks a system designer can increase the range of behaviors and the overall capability of the system. As the community continues to increase the capabilities of soft systems-by stacking more and more functional blocks-we will encounter a practical limit with the number of parallelized control lines. In this paper, we review 20 soft systems reported in the literature and we observe this trend of one-to-one mapping of control outputs to functional blocks. We also observe that stacking functional blocks results in systems that are increasingly capable of a diverse range of complex motions and behaviors, leading ultimately to systems that are capable of performing useful tasks. The design heuristic that we observe is one of increased capability by stacking simple units-a classic engineering approach. As we move towards more capability in soft robotic systems, and begin to reach practical limits in control, we predict that we will require increased amounts of autonomy in the system. The field of soft robotics is in its infancy, and as we move towards realizing the potential of this technology, we will need to develop design tools and control paradigms that allow us to handle the complexity in these stacked, non-linear systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA