Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656893

RESUMO

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 83(1): 3-5, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608668

RESUMO

In this issue of Molecular Cell, Yaneva et al.1 demonstrate that the DNA helicase FANCJ promotes DNA replication-coupled DNA-protein crosslink (DPC) repair via an unexpected ability to unfold the protein adduct, thereby enabling its proteolysis by the DPC protease SPRTN.


Assuntos
DNA Helicases , Reparo do DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA/genética , DNA/metabolismo , Proteínas/genética , Dano ao DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo
3.
Mol Cell ; 83(18): 3222-3224, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738957

RESUMO

Prof. Niels Mailand and Ann Schirin Mirsanaye share with Molecular Cell some of their thoughts on making molecular biology more sustainable, outline their first-hand experiences of having their lab LEAF (Laboratory Efficiency Assessment Framework) certified, and impart some advice to our readers who are considering doing the same.


Assuntos
Laboratórios , Biologia Molecular
4.
Mol Cell ; 81(5): 1084-1099.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450211

RESUMO

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase I/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Quinase 1 Polo-Like
5.
Mol Cell ; 81(3): 442-458.e9, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33321094

RESUMO

Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Xenopus laevis
6.
Nat Rev Mol Cell Biol ; 17(6): 379-94, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211488

RESUMO

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina/metabolismo , Ubiquitinação , Animais , Humanos , Transdução de Sinais , Ubiquitina-Proteína Ligases/fisiologia
7.
Cell ; 155(5): 1088-103, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267891

RESUMO

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Origem de Replicação
8.
Cell ; 150(4): 697-709, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22884692

RESUMO

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Alphapapillomavirus , Linhagem Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Transcrição Gênica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
9.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253574

RESUMO

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/genética , Chaperonas de Histonas/genética , Neoplasias/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Núcleo Celular/genética , Núcleo Celular/imunologia , Citoplasma/genética , Citoplasma/imunologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/imunologia , Enzimas Desubiquitinantes/imunologia , Células HeLa , Humanos , Imunidade Celular/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Neoplasias/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Ligação Proteica/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
10.
EMBO J ; 41(9): e110145, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35349166

RESUMO

Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly-ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell-based ubiquitin replacement strategy to enable selective and conditional abrogation of K27-linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27-linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97-proteasome pathway model substrate (Ub(G76V)-GFP) is directly modified by K27-linked ubiquitylation, and that disabling the formation of K27-linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage-specific binder UCHL3 impedes Ub(G76V)-GFP turnover at the level of p97 function. Our findings suggest a critical role of K27-linked ubiquitylation in supporting cell fitness by facilitating p97-dependent processing of ubiquitylated nuclear proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Núcleo Celular/metabolismo , Proliferação de Células , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
11.
EMBO J ; 41(14): e110611, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35695070

RESUMO

Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT-061 have recently been reported to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT-061 on PP2A-B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome-wide CRISPR-Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT-061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT-061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A-B56 biology.


Assuntos
Apoptose , Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional
12.
Mol Cell ; 70(1): 165-174.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576528

RESUMO

Deubiquitylating enzymes (DUBs) enhance the dynamics of the versatile ubiquitin (Ub) code by reversing and regulating cellular ubiquitylation processes at multiple levels. Here we discovered that the uncharacterized human protein ZUFSP (zinc finger with UFM1-specific peptidase domain protein/C6orf113/ZUP1), which has been annotated as a potentially inactive UFM1 protease, and its fission yeast homolog Mug105 define a previously unrecognized class of evolutionarily conserved cysteine protease DUBs. Human ZUFSP selectively interacts with and cleaves long K63-linked poly-Ub chains by means of tandem Ub-binding domains, whereas it displays poor activity toward mono- or di-Ub substrates. In cells, ZUFSP is recruited to and regulates K63-Ub conjugates at genotoxic stress sites, promoting chromosome stability upon replication stress in a manner dependent on its catalytic activity. Our findings establish ZUFSP as a new type of linkage-selective cysteine peptidase DUB with a role in genome maintenance pathways.


Assuntos
Neoplasias Ósseas/enzimologia , Dano ao DNA , Enzimas Desubiquitinantes/metabolismo , Instabilidade Genômica , Osteossarcoma/enzimologia , Poliubiquitina/metabolismo , Epitélio Pigmentado da Retina/enzimologia , Sítios de Ligação , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/genética , Células HEK293 , Humanos , Lisina , Osteossarcoma/genética , Poliubiquitina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Ubiquitinação
13.
EMBO J ; 40(18): e107413, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34346517

RESUMO

DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Instabilidade Genômica , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sumoilação , Ubiquitina/metabolismo , Ubiquitinação
14.
Nat Rev Mol Cell Biol ; 14(5): 269-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594953

RESUMO

Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA-protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage.


Assuntos
Instabilidade Genômica , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dano ao DNA , Replicação do DNA , Humanos , Ligação Proteica
15.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-36971114

RESUMO

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Assuntos
Ataxina-3 , Cromatina , Replicação do DNA , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Cromatina/genética , Dano ao DNA , Doença de Machado-Joseph/genética , Proteínas Repressoras/metabolismo
16.
EMBO Rep ; 23(4): e53639, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156773

RESUMO

DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI-FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)-mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error-free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error-free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI-deficient cells are exquisitely sensitive to ICL-inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR-mediated ICL repair is defective, and breaks are instead re-ligated by polymerase θ-dependent microhomology-mediated end-joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error-free ICL repair.


Assuntos
Anemia de Fanconi , DNA , Dano ao DNA , Reparo do DNA , Replicação do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos
17.
Cell ; 136(3): 435-46, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203579

RESUMO

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Assuntos
Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Terciária de Proteína , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
18.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914427

RESUMO

DNA-protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT-type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin-regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of Caenorhabditis elegans GCNA-1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication-coupled DPC resolution processes.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Sumoilação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Cinética , Proteínas Nucleares/genética , Proteólise
19.
EMBO J ; 38(21): e102361, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613024

RESUMO

The E3 ubiquitin ligase RNF8 (RING finger protein 8) is a pivotal enzyme for DNA repair. However, RNF8 hyper-accumulation is tumour-promoting and positively correlates with genome instability, cancer cell invasion, metastasis and poor patient prognosis. Very little is known about the mechanisms regulating RNF8 homeostasis to preserve genome stability. Here, we identify the cellular machinery, composed of the p97/VCP ubiquitin-dependent unfoldase/segregase and the Ataxin 3 (ATX3) deubiquitinase, which together form a physical and functional complex with RNF8 to regulate its proteasome-dependent homeostasis under physiological conditions. Under genotoxic stress, when RNF8 is rapidly recruited to sites of DNA lesions, the p97-ATX3 machinery stimulates the extraction of RNF8 from chromatin to balance DNA repair pathway choice and promote cell survival after ionising radiation (IR). Inactivation of the p97-ATX3 complex affects the non-homologous end joining DNA repair pathway and hypersensitises human cancer cells to IR. We propose that the p97-ATX3 complex is the essential machinery for regulation of RNF8 homeostasis under both physiological and genotoxic conditions and that targeting ATX3 may be a promising strategy to radio-sensitise BRCA-deficient cancers.


Assuntos
Adenosina Trifosfatases/metabolismo , Ataxina-3/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Ataxina-3/genética , Sobrevivência Celular , Cromatina/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Mol Cell ; 57(1): 3-5, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25574947

RESUMO

In this issue, Guervilly et al. (2015) and Ouyang et al. (2015) identify SUMO-interacting motifs (SIMs) in the SLX4 DNA repair nuclease scaffold protein that promote its functions in genome stability maintenance pathways independently of its ubiquitin-binding properties.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Genoma , Subunidades Proteicas/metabolismo , Recombinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA