Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Allergy ; 78(5): 1218-1233, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424672

RESUMO

BACKGROUND: Dietary carbohydrates and fats are intrinsically correlated within the habitual diet. We aimed to disentangle the associations of starch and sucrose from those of fat, in relation to allergic sensitization, asthma and rhinoconjuctivitis prevalence in humans, and to investigate underlying mechanisms using murine models. METHODS: Epidemiological data from participants of two German birth cohorts (age 15) were used in logistic regression analyses testing cross-sectional associations of starch and sucrose (and their main dietary sources) with aeroallergen sensitization, asthma and rhinoconjunctivitis, adjusting for correlated fats (saturated, monounsaturated, omega-6 and omega-3 polyunsaturated) and other covariates. For mechanistic insights, murine models of aeroallergen-induced allergic airway inflammation (AAI) fed with a low-fat-high-sucrose or -high-starch versus a high-fat diet were used to characterize and quantify disease development. Metabolic and physiologic parameters were used to track outcomes of dietary interventions and cellular and molecular responses to monitor the development of AAI. Oxidative stress biomarkers were measured in murine sera or lung homogenates. RESULTS: We demonstrate a direct association of dietary sucrose with asthma prevalence in males, while starch was associated with higher asthma prevalence in females. In mice, high-carbohydrate feeding, despite scant metabolic effects, aggravated AAI compared to high-fat in both sexes, as displayed by humoral response, mucus hypersecretion, lung inflammatory cell infiltration and TH 2-TH 17 profiles. Compared to high-fat, high-carbohydrate intake was associated with increased pulmonary oxidative stress, signals of metabolic switch to glycolysis and decreased systemic anti-oxidative capacity. CONCLUSION: High consumption of digestible carbohydrates is associated with an increased prevalence of asthma in humans and aggravated lung allergic inflammation in mice, involving oxidative stress-related mechanisms.


Assuntos
Asma , Pneumonia , Masculino , Feminino , Humanos , Camundongos , Animais , Adolescente , Carboidratos da Dieta/farmacologia , Prevalência , Estudos Transversais , Asma/epidemiologia , Asma/etiologia , Pulmão , Inflamação , Amido/farmacologia , Sacarose/farmacologia
2.
Neuropsychobiology ; 79(1): 89-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30808841

RESUMO

In the past, accelerated tryptophan breakdown was considered to be a feature of clinical conditions, such as infection, inflammation, and malignant disease. More recently, however, the focus has changed to include the additional modulation of tryptophan metabolism by changes in nutrition and microbiota composition. The regulation of tryptophan concentration is critical for the maintenance of systemic homeostasis because it integrates essential pathways involved in nutrient sensing, metabolic stress response, and immunity. In addition to tryptophan being important as a precursor for the synthesis of the neurotransmitter serotonin, several catabolites along the kynurenine axis are neuroactive. This emphasizes the importance of the immunometabolic fate of this amino acid for processes relevant to neuropsychiatric symptoms. In humans, besides hepatic catabolism, there is usually a strong relationship between immune activation-associated tryptophan breakdown and increased levels of biomarkers, such as neopterin, which has particular relevance for both acute and chronic diseases. A shift towards neopterin synthesis during oxidative stress may indicate a corresponding decrease in tetrahydrobiopterin, a cofactor of several mono-oxygenases, providing a further link between tryptophan metabolism and serotonergic and catecholaminergic neurotransmission. The psychoneuroimmunological consequences of tryptophan metabolism and the susceptibility of this pathway to modulation by a variety of nutritional and lifestyle-related factors have important implications for the development of both diagnostic and treatment options.


Assuntos
Encefalopatias , Dieta , Microbioma Gastrointestinal , Estilo de Vida , Psiconeuroimunologia , Transdução de Sinais , Triptofano/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , Encefalopatias/microbiologia , Encefalopatias/terapia , Microbioma Gastrointestinal/fisiologia , Humanos , Transdução de Sinais/fisiologia
3.
Int J Tryptophan Res ; 17: 11786469241266312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092002

RESUMO

Tryptophan is an essential amino acid and plays an important role in several metabolic processes relevant for the human health. As the main metabolic pathway for tryptophan along the kynurenine axis is involved in inflammatory responses, changed metabolite levels can be used to monitor inflammatory diseases such as ulcerative colitis. As a progenitor of serotonin, altered tryptophan levels have been related to several neurogenerative diseases as well as depression or anxiety. While tryptophan concentrations are commonly evaluated in serum, a non-invasive detection approach using saliva might offer significant advantages, especially during long-term treatments of patients or elderly. In order to estimate whether active transport processes for tryptophan might contribute to a potential correlation between blood and saliva tryptophan concentrations, we investigated tryptophan's transport across an established oral mucosa in vitro model. Interestingly, treatment with tryptophan revealed a concentration dependent secretion of tryptophan and the presence of a saturable transporter while transport studies with deuterated tryptophan displayed increased permeability from the saliva to the blood compartment. Protein analysis demonstrated a distinct expression of L-type amino acid transporter 1 (LAT1), the major transporter for tryptophan, and exposure to inhibitors (2 -amino-2-norbornanecarboxylic acid (BCH), L-leucine) led to increased tryptophan levels on the saliva side. Additionally, exposure to tryptophan in equilibrium studies resulted in a regulation of LAT1 at the mRNA level. The data collected in this study suggest the participation of active transport mechanisms for tryptophan across the oral mucosa epithelium. Future studies should investigate the transport of tryptophan across salivary gland epithelia in order to enable a comprehensive understanding of tryptophan exchange at the blood-saliva barrier.

4.
Fitoterapia ; 137: 104252, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271787

RESUMO

The stems of Fissistigma polyanthoides (A.DC.) Merr. are traditionally used for the treatment of rheumatism and for recuperating women after childbirth. In our continuous phytochemical investigation of this plant, four new (1, 2, 5, and 19) and fifteen known (3, 4, and 6-18) phenolic compounds were isolated. The structures of all compounds were elucidated based on extensive spectroscopic analyses (1D-, 2D-NMR, and MS), and in comparison with reported literature data. The new natural products showed to be two poly-methoxylated chalcones (1 and 2) and two flavonoid glycosides, with 19 containing an uncommon sugar moiety (quinovose). Compounds with sufficient amount were tested for their anti-oxidant activity in a cell-based assay using the human bronchial epithelial cell line BEAS-2B. The compounds' capacity to inhibit the peroxyl radical triggered formation of dichlorofluorescein (DCF) was investigated in a dose-dependent manner. Both, anti-oxidant (3, 4, 6, 8-12, and 14) and pro-oxidative (5 and 16) properties were found for the investigated substances. The half maximal concentrations (IC50) for the inhibition of ROS formation ranged between 18.8 µM and 63.5 µM. Compounds, which acted protectively in the cellular antioxidant activity (CAA) assay and did not negatively affect cell viability, could be interesting targets for further investigations.


Assuntos
Annonaceae/química , Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Fenóis/farmacologia , Antioxidantes/isolamento & purificação , Linhagem Celular , Chalconas/isolamento & purificação , Chalconas/farmacologia , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Humanos , Estrutura Molecular , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Caules de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA