RESUMO
Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias da Próstata , Sialiltransferases , Masculino , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo , Reino Unido , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismoRESUMO
BACKGROUND: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS: Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.
Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Células Clonais/patologia , Humanos , Masculino , Nucleotídeos , Próstata/patologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologiaRESUMO
OBJECTIVES: To present historical and contemporary hypotheses on the pathogenesis of benign prostatic hyperplasia (BPH), and the potential implications for current medical therapies. METHODS: The literature on BPH was reviewed. BPH is a prevalent disease with significant health and economic impacts on patients and health organisations across the world, whilst the cause/initiation of the disease process has still not been fully determined. RESULTS: In BPH, pathways involving androgens, oestrogens, insulin, inflammation, proliferative reawakening, stem cells and telomerase have been hypothesised in the pathogenesis of the disease. A number of pathways first described >40 years ago have been first rebuked and then have come back into favour. A system of an inflammatory process within the prostate, which leads to growth factor production, stem cell activation, and cellular proliferation encompassing a number of pathways, is currently in vogue. This review also highlights the physiology of the prostate cell subpopulations and how this may account for the delay/failure in treatment response for certain medical therapies. CONCLUSION: BPH is an important disease, and as the pathogenesis is not fully understood it impacts the effectiveness of medical therapies. This impacts patients, with further research potentially highlighting novel therapeutic avenues.
Assuntos
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/etiologia , Hiperplasia Prostática/fisiopatologia , Hiperplasia Prostática/terapiaRESUMO
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , RNA Polimerase III/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Idoso , Elementos Alu/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS: PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS: PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS: PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Assuntos
Carcinogênese/genética , Neoplasias/genética , Fosfolipase D/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Neoplasias/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais/genéticaRESUMO
Choosing an appropriate cell model(s) is the first decision to be made before starting a new project or programme of study. Here, we address the rationale that can be behind this decision and we summarize the current cell models that are used to study prostate cancer. Researchers face the challenge of choosing a model that recapitulates the complexity and heterogeneity of prostate cancer. The use of primary prostate epithelial cells cultured from patient tissue is discussed, and the necessity for close clinical-academic collaboration in order to do this is highlighted. Finally, a novel quantitative phase imaging technique is described, along with the potential for cell characterization to not only include gene expression and protein markers but also morphological features, cell behaviour and kinetic activity.
Assuntos
Linhagem Celular Tumoral , Células Epiteliais , Neoplasias da Próstata , Linhagem Celular , Células Epiteliais/citologia , Humanos , MasculinoRESUMO
Prostate cancers have a justified reputation as one of the most heterogeneous human tumours. Indeed, there are some who consider that advanced and castration-resistant prostate cancers are incurable, as a direct result of this heterogeneity. However, tumour heterogeneity can be defined in different ways. To a clinician, prostate cancer is a number of different diseases, the treatments for which remain equally heterogeneous and uncertain. To the pathologist, the histopathological appearances of the tumours are notoriously heterogeneous. Indeed, the genius of Donald Gleason in the 1960s was to devise a classification system designed to take into account the heterogeneity of the tumours both individually and in the whole prostate context. To the cell biologist, a prostate tumour consists of multiple epithelial cell types, inter-mingled with various fibroblasts, neuroendocrine cells, endothelial cells, macrophages and lymphocytes, all of which interact to influence treatment responses in a patient-specific manner. Finally, genetic analyses of prostate cancers have been compromised by the variable gene rearrangements and paucity of activating mutations observed, even in large numbers of patient tumours with consistent clinical diagnoses and/or outcomes. Research into familial susceptibility has even generated the least tractable outcome of such studies: the genetic loci are of low penetrance and are of course heterogeneous. By fractionating the tumour (and patient-matched non-malignant tissues) heterogeneity can be resolved, revealing homogeneous markers of patient outcomes.
Assuntos
Células Endoteliais , Neoplasias da Próstata , Células Endoteliais/citologia , Heterogeneidade Genética , Humanos , Masculino , Mutação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapiaRESUMO
A successful prostate cancer must be capable of changing its phenotype in response to a variety of microenvironmental influences, such as adaptation to treatment or successful proliferation at a particular metastatic site. New cell phenotypes emerge by selection from the large, genotypically heterogeneous pool of candidate cells present within any tumor mass, including a distinct stem cell-like population. In such a multicellular model of human prostate cancer, flexible responses are primarily governed not only by de novo mutations but appear to be dominated by a combination of epigenetic controls, whose application results in treatment resistance and tumor relapse. Detailed studies of these individual cell populations have resulted in an epigenetic model for epithelial cell differentiation, which is also instructive in explaining the reported high and inevitable relapse rates of human prostate cancers to a multitude of treatment types.
Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Próstata/química , Neoplasias da Próstata/genética , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mutação , Células-Tronco Neoplásicas/químicaRESUMO
BACKGROUND: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. METHODS: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. RESULTS: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. CONCLUSIONS: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.
Assuntos
Inibidores Enzimáticos/farmacologia , Fosfolipase D/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Domperidona/análogos & derivados , Domperidona/farmacologia , Humanos , Imuno-Histoquímica , Indóis/farmacologia , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Fosfolipase D/biossíntese , Fosfolipase D/metabolismo , Piperidinas/farmacologia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Análise Serial de Tecidos , Células Tumorais CultivadasRESUMO
BACKGROUND: Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells' malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. METHODS: We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. RESULTS: Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. CONCLUSIONS: This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.
Assuntos
Metilação de DNA , Fenótipo , Neoplasias da Próstata/genética , Ilhas de CpG , Humanos , MasculinoRESUMO
Prostate cancer is the most commonly diagnosed male malignancy. Despite compelling epidemiology, there are no definitive aetiological clues linking development to frequency. Pre-malignancies such as proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) yield insights into the initiating events of prostate cancer, as they supply a background "field" for further transformation. An inflammatory aetiology, linked to recurrent prostatitis, and heterologous signalling from reactive stroma and infiltrating immune cells may result in cytokine addiction of cancer cells, including a tumour-initiating population also known as cancer stem cells (CSCs). In prostate tumours, the background mutational rate is rarely exceeded, but genetic change via profound sporadic chromosomal rearrangements results in copy number variations and aberrant gene expression. In cancer, dysfunctional differentiation is imposed upon the normal epithelial lineage, with disruption/disappearance of the basement membrane, loss of the contiguous basal cell layer and expansion of the luminal population. An initiating role for androgen receptor (AR) is attractive, due to the luminal phenotype of the tumours, but alternatively a pool of CSCs, which express little or no AR, has also been demonstrated. Indolent and aggressive tumours may also arise from different stem or progenitor cells. Castrate resistant prostate cancer (CRPC) remains the inevitable final stage of disease following treatment. Time-limited effectiveness of second-generation anti-androgens, and the appearance of an AR-neuroendocrine phenotype imply that metastatic disease is reliant upon the plasticity of the CSC population, and indeed CSC gene expression profiles are most closely related to those identified in CRPCs.
Assuntos
Transformação Celular Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Aberrações Cromossômicas , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismoRESUMO
The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.
Assuntos
Neoplasias/terapia , Gases em Plasma/uso terapêutico , Animais , Temperatura Baixa , Crioterapia , Humanos , Neoplasias/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Objective identification of key miRNAs from transcriptomic data is difficult owing to the inherent inconsistencies within miRNA target-prediction algorithms and the promiscuous nature of miRNA-mRNA target relationship. METHODS: An integrated database of miRNAs and their 'relevant' mRNA targets was generated from validated miRNA and mRNA microarray data sets generated from patient-derived prostate epithelial normal and cancer stem-like cells (SCs) and committed basal (CB) cells. The effect of miR-542-5p inhibition was studied to provide proof-of-principle for database utility. RESULTS: Integration of miRNA-mRNA databases showed that signalling pathways and processes can be regulated by a single or relatively few miRNAs, for example, DNA repair/Notch pathway by miR-542-5p, P=0.008. Inhibition of miR-542-5p in CB cells (thereby achieving miR-542-5p expression levels similar to SCs) promoted efficient DNA repair and activated expression of Notch reporters, HES1 and Survivin, without inducing dedifferentiation into SCs. CONCLUSIONS: Our novel framework impartially identifies therapeutically relevant miRNA candidates from transcriptomic data sets.
Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , MicroRNAs/genética , Próstata/metabolismo , Próstata/patologia , RNA Mensageiro/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Notch/genética , Transdução de Sinais/genéticaRESUMO
In the human prostate, expression of prostate-specific genes is known to be directly regulated by the androgen-induced stimulation of the androgen receptor (AR). However, less is known about the expression control of the prostate-restricted TGM4 (hTGP) gene. In the present study we demonstrate that the regulation of the hTGP gene depends mainly on retinoic acid (RA). We provide evidence that the retinoic acid receptor gamma (RAR-G) plays a major role in the regulation of the hTGP gene and that presence of the AR, but not its transcriptional transactivation activity, is critical for hTGP transcription. RA and androgen responsive elements (RARE and ARE) were mapped to the hTGP promoter by chromatin immunoprecipitation (ChIP), which also indicated that the active ARE and RARE sites were adjacent, suggesting that the antagonistic effect of androgen and RA is related to the relative position of binding sites. Publicly available AR and RAR ChIP-seq data was used to find gene potentially regulated by AR and RAR. Four of these genes (CDCA7L, CDK6, BTG1 and SAMD3) were tested for RAR and AR binding and two of them (CDCA7L and CDK6) proved to be antagonistically regulated by androgens and RA confirming that this regulation is not particular of hTGP.
Assuntos
Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Próstata/enzimologia , Receptores Androgênicos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transglutaminases/genética , Androgênios/farmacologia , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Metribolona/farmacologia , Regiões Promotoras Genéticas , Próstata/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Receptores do Ácido Retinoico/fisiologia , Ativação Transcricional , Transglutaminases/metabolismo , Tretinoína/farmacologia , Receptor gama de Ácido RetinoicoRESUMO
Research in the new field of plasma medicine continues to demonstrate the efficacy of low temperature plasmas for numerous biomedical applications. Responses such as reduction in cell viability and cell death for cancer therapy, cell proliferation for wound healing, and bacterial inactivation have been observed as a result of plasma treatment. In this study we applied low temperature plasma to prostate cancer primary cells and tissue to inflict irreparable DNA damage.
RESUMO
Normal prostatic epithelium is composed of basal and luminal cells. Prostate cancer can be initiated in both benign basal and luminal stem cells, but because basal cell markers are not expressed in patient tumors, the former result was unexpected. Since the cells of origin of prostate cancer are important therapeutic targets, we sought to provide further proof that basal stem cells have tumorigenic potential. Prostatic basal cells were enriched based on α2ß1integrin(hi) expression and further enriched for stem cells using CD133 in nontumorigenic BPH-1 cells. Human embryonic stem cells (hESCs) were also used as a source of normal stem cells. To test their tumorigenicity, we used two alternate stromal-based approaches; (a) recombination with human cancer-associated fibroblasts (CAFs) or (b) recombination with embryonic stroma (urogenital mesenchyme) and treated host mice with testosterone and 17ß-estradiol. Enriched α2ß1integrin(hi) basal cells from BPH-1 cells resulted in malignant tumor formation using both assays of tumorigenicity. Surprisingly, the tumorigenic potential did not reside in the CD133(+) stem cells but was consistently observed in the CD133(-) population. CAFs also failed to induce prostatic tumors from hESCs. These data confirmed that benign human basal cells include cells of origin of prostate cancer and reinforced their importance as therapeutic targets. In addition, our data suggested that the more proliferative CD133(-) basal cells are more susceptible to tumorigenesis compared to the CD133(+)-enriched stem cells. These findings challenge the current dogma that normal stem cells and cells of origin of cancer are the same cell type(s).
Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Antígeno AC133 , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/metabolismoRESUMO
The origin and phenotype of stem cells in human prostate cancer remains a subject of much conjecture. In this scenario, CD133 has been successfully used as a stem cell marker in both normal prostate and prostate cancer. However, cancer stem cells have been identified without the use of this marker, opening up the possibility of a CD133 negative cancer stem cell. In this chapter, we review the current literature regarding prostate cancer stem cells, with specific reference to the expression of CD133 as a stem cell marker to identify and purify stem cells in normal prostate epithelium and prostate cancer.
Assuntos
Células-Tronco Neoplásicas , Neoplasias da Próstata , Biomarcadores/metabolismo , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismoRESUMO
Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Regulação para Cima , Glicosilação , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Ativação TranscricionalRESUMO
This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony-forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions not only as a part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.
Assuntos
Proteínas de Ligação a DNA , Próstata , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Ciclo Celular/genética , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/genéticaRESUMO
Aldehyde dehydrogenases (ALDHs) are overexpressed in various tumor types including prostate cancer and considered a potential target for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB) has been extensively reported as a pan-inhibitor of ALDH isoforms, and here, we report on the synthesis, ALDH isoform selectivity, and cellular potencies in prostate cancer cells of 40 DEAB analogues; three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues (18 and 19) showed potent inhibitory activity against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity (IC50 = 10-200 µM) compared with DEAB (>200 µM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against patient-derived primary prostate tumor epithelial cells, as single agents or in combination treatment with docetaxel. In conclusion, our study supports the use of DEAB as an ALDH inhibitor but also reveals closely related analogues with increased selectivity and potency.