Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(6): ar46, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353012

RESUMO

Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a "master regulator"-T-bet (Th1), GATA3 (Th2), and RORγT (Th17)-that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotype, Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17, and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remain unclear. Here through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any master regulator can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Diferenciação Celular , Fenótipo
2.
Curr Oncol ; 29(11): 8285-8301, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36354714

RESUMO

Immune evasion and metabolic reprogramming are hallmarks of cancer progression often associated with a poor prognosis and frequently present significant challenges for cancer therapies. Recent studies have highlighted the dynamic interaction between immunosuppression and the dysregulation of energy metabolism in modulating the tumor microenvironment to promote cancer aggressiveness. However, a pan-cancer association among these two hallmarks, and a potent common driver for them-epithelial-mesenchymal transition (EMT)-remains to be done. This meta-analysis across 184 publicly available transcriptomic datasets as well as The Cancer Genome Atlas (TCGA) data reveals that an enhanced PD-L1 activity signature along with other immune checkpoint markers correlate positively with a partial EMT and an elevated glycolysis signature but a reduced OXPHOS signature in many carcinomas. These trends were also recapitulated in single-cell, RNA-seq, time-course EMT induction data across cell lines. Furthermore, across multiple cancer types, concurrent enrichment of glycolysis and PD-L1 results in worse outcomes in terms of overall survival as compared to enrichment for only PD-L1 activity or expression. These results highlight potential functional synergy among these interconnected axes of cellular plasticity in enabling metastasis and multi-drug resistance in cancer.


Assuntos
Antígeno B7-H1 , Carcinoma , Humanos , Transição Epitelial-Mesenquimal/genética , Prognóstico , Microambiente Tumoral
3.
Biomolecules ; 12(2)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35204797

RESUMO

Cancer metastasis is the leading cause of cancer-related mortality and the process of the epithelial-to-mesenchymal transition (EMT) is crucial for cancer metastasis. Both partial and complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among the oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways and their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show the diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. The analysis of single-cell data for EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Further, assessing the association of EMT and metabolic activity with patient survival shows that a higher extent of EMT and glycolysis predicts a worse prognosis in many cancers. Together, our results reveal the underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-mesenchymal spectrum of states.


Assuntos
Neoplasias , Transição Epitelial-Mesenquimal , Glicólise , Humanos , Redes e Vias Metabólicas , Neoplasias/metabolismo , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA