Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 319(1): C64-C74, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401607

RESUMO

Insulin resistance leads to excessive endothelial cell (EC) superoxide generation and accelerated atherosclerosis. The principal source of superoxide from the insulin-resistant endothelium is the Nox2 isoform of NADPH oxidase. Here we examine the therapeutic potential of Nox2 inhibition on superoxide generation in saphenous vein ECs (SVECs) from patients with advanced atherosclerosis and type 2 diabetes and on vascular function, vascular damage, and lipid deposition in apolipoprotein E-deficient (ApoE-/-) mice with EC-specific insulin resistance (ESMIRO). To examine the effect of genetic inhibition of Nox2, ESMIRO mice deficient in ApoE-/- and Nox2 (ESMIRO/ApoE-/-/Nox2-/y) were generated and compared with ESMIRO/ApoE-/-/Nox2+/y littermates. To examine the effect of pharmacological inhibition of Nox2, we administered gp91dstat or scrambled peptide to ESMIRO/ApoE-/- mice. SVECs from diabetic patients had increased expression of Nox2 protein with concomitant increase in superoxide generation, which could be reduced by the Nox2 inhibitor gp91dstat. After 12 wk Western diet, ESMIRO/ApoE-/-/Nox2-/y mice had reduced EC superoxide generation and greater aortic relaxation to acetylcholine. ESMIRO/ApoE-/-/Nox2-/y mice developed more lipid deposition in the thoraco-abdominal aorta with multiple foci of elastin fragmentation at the level of the aortic sinus and greater expression of intercellular adhesion molecule-1 (ICAM-1). Gp91dstat reduced EC superoxide and lipid deposition in the thoraco-abdominal aorta of ESMIRO/ApoE-/- mice without causing elastin fragmentation or increased ICAM-1 expression. These results demonstrate that insulin resistance is characterized by increased Nox2-derived vascular superoxide. Complete deletion of Nox2 in mice with EC insulin resistance exacerbates, whereas partial pharmacological Nox2 inhibition protects against, insulin resistance-induced vascular damage.


Assuntos
Diabetes Mellitus/metabolismo , Endotélio Vascular/metabolismo , Glicoproteínas/farmacologia , Resistência à Insulina/fisiologia , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , NADPH Oxidase 2/deficiência , Técnicas de Cultura de Órgãos
2.
Vasc Biol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39401163

RESUMO

Insulin resistance underpins the progression of type 2 diabetes mellitus and leads to a collection of risk factors for the development of atherosclerosis. Whether or not insulin resistance at a whole body level per se leads to accelerated atherosclerosis is unclear. To answer this question we generated atherosclerosis prone mice with whole body insulin resistance secondary to haploinsufficiency of the insulin receptor (IR+/-) deficient in ApoE-/- (IR+/-/ApoE-/-). IR+/-/ApoE-/- and ApoE-/- littermates had similar weight, lipids and glucose tolerance at baseline. After 12 weeks Western high cholesterol diet, IR+/-/ApoE-/- had significantly more atherosclerosis in the thoracoabdominal aorta and at the level of the aortic sinus than ApoE-/- littermates. Excess Nox2 NADPH oxidase (Nox2) derived superoxide has been suggested to underpin diabetes related atherosclerosis. In IR+/-/ApoE-/- we examined the effect of inhibiting Nox2 using genetic or pharmacological approaches on the development of atherosclerosis. To genetically delete Nox2 we generated IR+/-/ApoE-/-/Nox2-/y and to inhibit Nox2 pharmacologically we treated IR+/-/ApoE-/- with the peptide Nox2 inhibitor gp91dstat. IR+/-/ApoE-/-/Nox2-/y had significant disruption of the aortic wall with increased thoracoabdominal atherosclerosis when compared to IR+/-/ApoE-/-/Nox2+/y littermates. Inhibition of Nox2 using gp91dstat reduced atherosclerosis in the thoracoabdominal aorta of IR+/-/ApoE-/-. Whole body insulin resistance accelerates the development of atherosclerosis. Genetic inhibition of Nox2 leads to disruption of the aortic wall in IR+/-/ApoE-/- mice with accelerated atherosclerosis whereas pharmacological Nox2 inhibition reduces atherosclerosis in IR+/-/ApoE-/- without disruption of the arterial wall.

3.
Diabetes ; 66(11): 2808-2821, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28830894

RESUMO

Shc homology 2-containing inositol 5' phosphatase-2 (SHIP2) is a lipid phosphatase that inhibits insulin signaling downstream of phosphatidylinositol 3-kinase (PI3K); its role in vascular function is poorly understood. To examine its role in endothelial cell (EC) biology, we generated mice with catalytic inactivation of one SHIP2 allele selectively in ECs (ECSHIP2Δ/+). Hyperinsulinemic-euglycemic clamping studies revealed that ECSHIP2Δ/+ was resistant to insulin-stimulated glucose uptake in adipose tissue and skeletal muscle compared with littermate controls. ECs from ECSHIP2Δ/+ mice had increased basal expression and activation of PI3K downstream targets, including Akt and endothelial nitric oxide synthase, although incremental activation by insulin and shear stress was impaired. Insulin-mediated vasodilation was blunted in ECSHIP2Δ/+ mice, as was aortic nitric oxide bioavailability. Acetylcholine-induced vasodilation was also impaired in ECSHIP2Δ/+ mice, which was exaggerated in the presence of a superoxide dismutase/catalase mimetic. Superoxide abundance was elevated in ECSHIP2Δ/+ ECs and was suppressed by PI3K and NADPH oxidase 2 inhibitors. These findings were phenocopied in healthy human ECs after SHIP2 silencing. Our data suggest that endothelial SHIP2 is required to maintain normal systemic glucose homeostasis and prevent oxidative stress-induced endothelial dysfunction.


Assuntos
Endotélio Vascular/metabolismo , Resistência à Insulina/fisiologia , NADPH Oxidase 2/metabolismo , Estresse Oxidativo/fisiologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Aorta , Células Cultivadas , Células Endoteliais , Regulação da Expressão Gênica/fisiologia , Técnica Clamp de Glucose , Intolerância à Glucose , Camundongos , Camundongos Knockout , NADPH Oxidase 2/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA