Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2.
Environ Sci Technol ; 50(20): 10823-10832, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27709898

RESUMO

Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (-)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (κ) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed κ up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited.

3.
Environ Int ; 185: 108519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428189

RESUMO

This study addressed the scarcity of NH3 measurements in urban Europe and the diverse monitoring protocols, hindering direct data comparison. Sixty-nine datasets from Finland, France, Italy, Spain, and the UK across various site types, including industrial (IND, 8), traffic (TR, 12), urban (UB, 22), suburban (SUB, 12), and regional background (RB, 15), are analyzed to this study. Among these, 26 sites provided 5, or more, years of data for time series analysis. Despite varied protocols, necessitating future harmonization, the average NH3 concentration across sites reached 8.0 ± 8.9 µg/m3. Excluding farming/agricultural hotspots (FAHs), IND and TR sites had the highest concentrations (4.7 ± 3.2 and 4.5 ± 1.0 µg/m3), followed by UB, SUB, and RB sites (3.3 ± 1.5, 2.7 ± 1.3, and 1.0 ± 0.3 µg/m3, respectively) indicating that industrial, traffic, and other urban sources were primary contributors to NH3 outside FAH regions. When referring exclusively to the FAHs, concentrations ranged from 10.0 ± 2.3 to 15.6 ± 17.2 µg/m3, with the highest concentrations being reached in RB sites close to the farming and agricultural sources, and that, on average for FAHs there is a decreasing NH3 concentration gradient towards the city. Time trends showed that over half of the sites (18/26) observed statistically significant trends. Approximately 50 % of UB and TR sites showed a decreasing trend, while 30 % an increasing one. Meta-analysis revealed a small insignificant decreasing trend for non-FAH RB sites. In FAHs, there was a significant upward trend at a rate of 3.51[0.45,6.57]%/yr. Seasonal patterns of NH3 concentrations varied, with urban areas experiencing fluctuations influenced by surrounding emissions, particularly in FAHs. Diel variation showed differing patterns at urban monitoring sites, all with higher daytime concentrations, but with variations in peak times depending on major emission sources and meteorological patterns. These results offer valuable insights into the spatio-temporal patterns of gas-phase NH3 concentrations in urban Europe, contributing to future efforts in benchmarking NH3 pollution control in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Amônia/análise , Poluição do Ar/análise , Espanha , Finlândia , Europa (Continente) , França , Itália , Monitoramento Ambiental/métodos , Reino Unido
4.
Anal Bioanal Chem ; 401(10): 3183-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21960254

RESUMO

Several studies have shown that combustion-derived fine particles cause adverse health effects. Previous toxicological studies on combustion-derived fine particles have rarely involved multiple endpoints and a detailed characterization of chemical composition. In this study, we developed a novel particle sampling system for toxicological and chemical characterization (PSTC), consisting of the Dekati Gravimetric Impactor (DGI) and a porous tube diluter. Physico-chemical and toxicological properties of the particles emitted from various combustion sources were evaluated in two measurement campaigns. First, the DGI was compared with the High-Volume Cascade Impactor (HVCI) and to the Dekati Low-Pressure Impactor (DLPI), using the same dilution system and the same sampling conditions. Only small differences were observed in the mass size distributions, total particulate matter (PM), and particulate matter with diameter smaller than 1 um (PM(1)) concentrations and geometric mass mean diameters (GMMD) between these three impactors. Second, the PSTC was compared with the HVCI sampling system, which has been optimal for collection of particulate samples for toxicological and chemical analyses. Differences were observed in the mass size distributions, total PM and PM(1) emissions, and GMMDs, probably due to the different sampling and dilution methods as well as different sampling substrates which affected the behavior of semi-volatile and volatile organic compounds. However, no significant differences were detected in the in vitro measurements of cytotoxicity between the samples collected with the PSTC and the HVCI systems. In measurements of genotoxicity, significant differences between the two sampling systems were seen only with the particles emitted from the sauna stove. In conclusion, due to compact size, PSTC is an applicable method for use in particle sampling as part of the toxicological and chemical characterization of particulate emissions from different combustion sources. It offers some advantages compared to the previously used high-volume sampling methods including compactness for field measurements, simple preparation of sample substrates and high extraction efficiency.


Assuntos
Poluentes Atmosféricos/química , Métodos Analíticos de Preparação de Amostras/métodos , Material Particulado/química , Emissões de Veículos/análise , Poluentes Atmosféricos/toxicidade , Métodos Analíticos de Preparação de Amostras/instrumentação , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Monitoramento Ambiental , Humanos , Camundongos , Testes de Mutagenicidade , Material Particulado/toxicidade
5.
Inhal Toxicol ; 22 Suppl 2: 48-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21029031

RESUMO

There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis/toxicidade , Gasolina/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Catálise , Linhagem Celular , Quimiocina CXCL2/metabolismo , Ensaio Cometa , Testes Imunológicos de Citotoxicidade , Inflamação/metabolismo , Camundongos , Testes de Mutagenicidade , Estresse Oxidativo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Environ Sci Process Impacts ; 18(12): 1561-1571, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27886312

RESUMO

European Committee for Standardisation (CEN) Technical Committee 264 'Air Quality' has recently produced a standard method for the measurements of anions and cations in PM2.5 within its Working Group 34 in response to the requirements of European Directive 2008/50/EC. It is expected that this method will be used in future by all Member States making measurements of the ionic content of PM2.5. This paper details the results of a field measurement campaign and the statistical analysis performed to validate this method, assess its uncertainty and define its working range to provide clarity and confidence in the underpinning science for future users of the method. The statistical analysis showed that, except for the lowest range of concentrations, the expanded combined uncertainty is expected to be below 30% at the 95% confidence interval for all ions except Cl-. However, if the analysis is carried out on the lower concentrations found at rural sites the uncertainty can be in excess of 50% for Cl-, Na+, K+, Mg2+ and Ca2+. An estimation of the detection limit for all ions was also calculated and found to be 0.03 µg m-3 or below.


Assuntos
Poluentes Atmosféricos/normas , Ânions/análise , Ânions/normas , Cátions/análise , Cátions/normas , Monitoramento Ambiental/legislação & jurisprudência , Material Particulado/normas , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Europa (Continente) , Material Particulado/análise , Padrões de Referência
7.
Sci Total Environ ; 350(1-3): 119-35, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16227078

RESUMO

Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Incêndios , Glucose/análogos & derivados , Fumaça/análise , Aerossóis/análise , Movimentos do Ar , Finlândia , Glucose/análise , Microscopia Eletrônica de Varredura , Oxalatos , Tamanho da Partícula , Potássio
8.
Science ; 339(6122): 943-6, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23430652

RESUMO

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

9.
Sci Total Environ ; 408(3): 644-51, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903567

RESUMO

The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 microm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM(10) were actually in PM(2.5). For PAHs and trace elements, it is more beneficial to analyse the PM(2.5) or even the PM(1) fraction instead of PM(10), because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 microm, as well as those of submicron particles, increased, and also the ratio PM(1)/PM(10) increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 microm. PAH concentrations rose even to the same level as in winter.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Incêndios , Material Particulado/análise , Poluentes Atmosféricos/química , Finlândia , Geografia , Humanos , Compostos Inorgânicos/análise , Metais/análise , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano
10.
Environ Sci Technol ; 40(2): 584-9, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16468406

RESUMO

Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.


Assuntos
Eletricidade Estática , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA