Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685532

RESUMO

Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Polímeros/química , Linhagem Celular Tumoral
2.
Antioxidants (Basel) ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38671946

RESUMO

The positional cloning of single nucleotide polymorphisms (SNPs) of the neutrophil cytosolic factor 1 (Ncf1) gene, advocating that a low oxidative burst drives autoimmune disease, demands an understanding of the underlying molecular causes. A cellular target could be T cells, which have been shown to be regulated by reactive oxygen species (ROS). However, the pathways by which ROS mediate T cell signaling remain unclear. The adaptor molecule linker for activation of T cells (LAT) is essential for coupling T cell receptor-mediated antigen recognition to downstream responses, and it contains several cysteine residues that have previously been suggested to be involved in redox regulation. To address the possibility that ROS regulate T cell-dependent inflammation through LAT, we established a mouse strain with cysteine-to-serine mutations at positions 120 and 172 (LATSS). We found that redox regulation of LAT through C120 and C172 mediate its localization and phosphorylation. LATSS mice had reduced numbers of double-positive thymocytes and naïve peripheral T cells. Importantly, redox insensitivity of LAT enhanced T cell-dependent autoimmune inflammation in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). This effect was reversed on an NCF1-mutated (NCF1m1j), ROS-deficient, background. Overall, our data show that LAT is redox-regulated, acts to repress T cell activation, and is targeted by ROS induced by NCF1 in antigen-presenting cells (APCs).

3.
Sci Adv ; 10(30): eadl0796, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047099

RESUMO

Naive T cells recirculate between the spleen and lymph nodes where they mount immune responses when meeting dendritic cells presenting foreign antigen. As this may happen anywhere, naive T cells ought to visit all lymph nodes. Here, deep sequencing almost-complete TCR repertoires led to a comparison of different lymph nodes within and between individual mice. We find strong evidence for a deterministic CD4/CD8 lineage choice and a consistent spatial structure. Specifically, some T cells show a preference for one or multiple lymph nodes, suggesting that their TCR interacts with locally presented (self-)peptides. These findings are mirrored in TCR-transgenic mice showing localized CD69 expression, retention, and cell division. Thus, naive T cells intermittently sense antigenically dissimilar niches, which is expected to affect their homeostatic competition.


Assuntos
Linfonodos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T , Animais , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Oncoimmunology ; 13(1): 2376782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983599

RESUMO

Immune checkpoint (IC) blockade and adoptive transfer of tumor-specific T-cells (ACT) are two major strategies to treat metastatic melanoma. Their combination can potentiate T-cell activation in the suppressive tumor microenvironment, but the autoimmune adverse effects associated with systemic injection of IC blockers persist with this strategy. ACT of tumor-reactive T-cells defective for IC expression would overcome this issue. For this purpose, PD-1 and TIGIT appear to be relevant candidates, because their co-expression on highly tumor-reactive lymphocytes limits their therapeutic efficacy within the tumor microenvironme,nt. Our study compares the consequences of PDCD1 or TIGIT genetic deletion on anti-tumor properties and T-cell fitness of melanoma-specific T lymphocytes. Transcriptomic analyses revealed down-regulation of cell cycle-related genes in PD-1KO T-cells, consistent with biological observations, whereas proliferative pathways were preserved in TIGITKO T-cells. Functional analyses showed that PD-1KO and TIGITKO T-cells displayed superior antitumor reactivity than their wild-type counterpart in vitro and in a preclinical melanoma model using immunodeficient mice. Interestingly, it appears that TIGITKO T-cells were more effective at inhibiting tumor cell proliferation in vivo, and persist longer within tumors than PD-1KO T-cells, consistent with the absence of impact of TIGIT deletion on T-cell fitness. Taken together, these results suggest that TIGIT deletion, over PD-1 deletion, in melanoma-specific T-cells is a compelling option for future immunotherapeutic strategies.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Receptores Imunológicos , Animais , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Melanoma/imunologia , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Deleção de Genes , Microambiente Tumoral/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária/imunologia
5.
Nat Commun ; 15(1): 4119, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750020

RESUMO

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Assuntos
Proteínas Reguladoras de Apoptose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Receptores Depuradores , Sepse , Animais , Camundongos , Ceco/cirurgia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Ligadura , Lipopolissacarídeos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Sepse/imunologia , Sepse/tratamento farmacológico , Choque Séptico/imunologia , Proteínas Reguladoras de Apoptose/uso terapêutico , Receptores Depuradores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA