Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Am Chem Soc ; 146(20): 14246-14259, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728108

RESUMO

The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.

2.
Nano Lett ; 23(20): 9451-9460, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842945

RESUMO

Dry eye disease (DED) is a chronic condition characterized by ocular dryness and inflammation. The tear film lipid layer (TFLL) is the outermost layer composed of lipids and proteins that protect the ocular surface. However, environmental contaminants can disrupt its structure, potentially leading to DED. Although the importance of tear proteins in the TFLL functionality has been clinically recognized, the molecular mechanisms underlying TFLL-protein interactions remain unclear. In this study, we investigated tear protein-lipid interactions and analyzed their role in the TFLL functionality. The results show that lysozyme (LYZ) increases the stability of the TFLL by reducing its surface tension and increasing its surface pressure, resulting in increased TFLL evaporation and bacterial invasion resistance, with improved wettability and lubrication performance. These findings highlight the critical role of LYZ in maintaining ocular health and provide potential avenues for investigating novel approaches to DED treatment and patient well-being.


Assuntos
Síndromes do Olho Seco , Lipídeos , Humanos , Lipídeos/química , Muramidase , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Fenômenos Físicos , Lágrimas/química , Lágrimas/metabolismo
3.
Soft Matter ; 19(21): 3966-3974, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37221902

RESUMO

Curvature-mediated lipid-protein interactions are important determinants of numerous vital cellular reactions and mechanisms. Biomimetic lipid bilayer membranes, such as giant unilamellar vesicles (GUVs), coupled with quantum dot (QD) fluorescent probes, provide an avenue to elucidate the mechanisms and geometry of induced protein aggregation. However, essentially all QDs used in QD-lipid membrane studies encountered in the literature are of the cadmium selenide (CdSe) or CdSe core/ZnS shell type, which are quasispherically shaped. We report here the membrane curvature partitioning of cube-shaped CsPbBr3 QDs embedded within deformed GUV lipid bilayers versus that of a conventional small fluorophore (ATTO-488) and quasispherical CdSe core/ZnS shell QDs. In alignment with basic packing theory regarding cubes packed in curved confined spaces, the local relative concentration of CsPbBr3 is highest in areas of lowest relative curvature in the plane of observation; this partitioning behavior is significantly different from that of ATTO-488 (p = 0.0051) and CdSe (p = 1.10 × 10-11). In addition, when presented with only one principal radius of curvature in the observation plane, no significant difference (p = 0.172) was observed in the bilayer distribution of CsPbBr3versus that of ATTO-488, suggesting that both QD and lipid membrane geometry greatly impact the curvature preferences of the QDs. These results highlight a fully-synthetic analog to curvature-induced protein aggregation, and lay a framework for the structural and biophysical analysis of complexes between lipid membranes and the shape of intercalating particles.


Assuntos
Pontos Quânticos , Compostos de Selênio , Pontos Quânticos/química , Fosfolipídeos , Agregados Proteicos , Compostos de Zinco/química , Bicamadas Lipídicas , Compostos de Selênio/química
4.
Langmuir ; 38(22): 6798-6807, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35608952

RESUMO

Lipid oxidation has significant effects on lipid bilayer properties; these effects can be expected to extend to interactions between the lipid bilayer and integral membrane proteins. Given that G protein-coupled receptor (GPCR) activity is known to depend on the properties of the surrounding lipid bilayer, these proteins represent an intriguing class of molecules in which the impact of lipid oxidation on protein behavior is studied. Here, we study the effects of lipid oxidation on the human serotonin 1A receptor (5-HT1AR). Giant unilamellar vesicles (GUVs) containing integral 5-HT1AR were fabricated by the hydrogel swelling method; these GUVs contained polyunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLinPC) and its oxidation product 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) at various ratios. 5-HT1AR-integrated GUVs were also fabricated from lipid mixtures that had been oxidized by extended exposure to the atmosphere. Both types of vesicles were used to evaluate 5-HT1AR activity using an assay to quantify GDP-GTP exchange by the coupled G protein α subunit. Results indicated that 5-HT1AR activity increases significantly in bilayers containing oxidized lipids. This work is an important step in understanding how hyperbaric oxidation can change plasma membrane properties and lead to physiological dysfunction.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Receptor 5-HT1A de Serotonina , Humanos , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , Oxirredução , Fosfatidilcolinas , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina , Lipossomas Unilamelares/síntese química
5.
Biophys J ; 120(9): 1641-1649, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675761

RESUMO

Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event-coupling of G protein to its receptor-investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ∼20%, suggesting small changes to binding can greatly impact downstream signaling.


Assuntos
Transdução de Sinais , Ressonância de Plasmônio de Superfície , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligação Proteica , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Macromol Rapid Commun ; 42(22): e2100474, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553805

RESUMO

Light-triggered unique shape transformation of calcein-loaded giant polymersomes with tubular protrusions, which serve as a reservoir membrane area during the shape transformation, is reported here. Under irradiation at the excitation wavelength of calcein, the tubular protrusions form strings of budded vesicles and then reintegrate into the mother vesicle. The initial giant polymersomes transform to two connected spherical vesicles via two pathways to alleviate the osmotic pressure imbalance across the vesicle membrane. The two connected spherical vesicles further transform to a mother vesicle with an inner daughter vesicle after switching off the light to relieve the bending energy. The finding provides a promising platform to mimic cell morphology changes.

7.
J Am Chem Soc ; 142(2): 1010-1019, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31894975

RESUMO

Transition metal carbides (TMCs) have demonstrated outstanding potential for utilization in a wide range of catalytic applications because of their inherent multifunctionality and tunable composition. However, the harsh conditions required to prepare these materials have limited the scope of synthetic control over their physical properties. The development of low-temperature, carburization-free routes to prepare TMCs would unlock the versatility of this class of materials, enhance our understanding of their physical properties, and enable their cost-effective production at industrial scales. Here, we report an exceptionally mild and scalable solution-phase synthesis route to phase-pure molybdenum carbide (α-MoC1-x) nanoparticles (NPs) in a continuous flow millifluidic reactor. We exploit the thermolytic decomposition of Mo(CO)6 in the presence of a surface-stabilizing ligand and a high boiling point solvent to yield MoC1-x NPs that are colloidally stable and resistant to bulk oxidation in air. To demonstrate the utility of this synthetic route to prepare catalytically active TMC NPs, we evaluated the thermochemical CO2 hydrogenation performance of α-MoC1-x NPs dispersed on an inert carbon support. The α-MoC1-x/C catalyst exhibited a 2-fold increase in both activity on a per-site basis and selectivity to C2+ products as compared to the bulk α-MoC1-x analogue.

8.
Anal Chem ; 92(15): 10218-10222, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633489

RESUMO

Modern genomic sequencing efforts are identifying potential diagnostic and therapeutic targets more rapidly than existing methods can generate the peptide- and protein-based ligands required to study them. To address this problem, we have developed a microfluidic enrichment device (MFED) enabling kinetic off-rate selection without the use of exogenous competitor. We tuned the conditions of the device (bed volume, flow rate, immobilized target) such that modest, readily achievable changes in flow rates favor formation or dissociation of target-ligand complexes based on affinity. Simple kinetic equations can be used to describe the behavior of ligand binding in the MFED and the kinetic rate constants observed agree with independent measurements. We demonstrate the utility of the MFED by showing a 4-fold improvement in enrichment compared to standard selection. The MFED described here provides a route to simultaneously bias pools toward high-affinity ligands while reducing the demand for target-protein to less than a nanomole per selection.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Proteínas/química , Cinética , Ligantes , Ligação Proteica , RNA Mensageiro/química , Fatores de Tempo
9.
Eur Biophys J ; 48(6): 549-558, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31327019

RESUMO

Liposomes are spherical vesicles enclosed by phospholipid bilayers. Nanoscale liposomes are widely employed for drug delivery in the pharmaceutical industry. In this study, nanoscale liposomes are fabricated using the microfluidic hydrodynamic focusing (MHF) approach, and the effects of flow rate ratio (FRR) on liposome size and drug loading efficiency are studied. Fluorescein isothiocyanate modified dextran is used as a hydrophilic drug simulant and Nile red is used as a hydrophobic drug simulant. The experiment results show that hydrophilic drug simulant loading efficiency increases as FRR increases and eventually plateaues at around 90% loading efficiency. The hydrophobic drug simulant loading efficiency and FRR have a positive linear correlation when FRR varies from 10 to 50. Concurrent loading of both hydrophilic and hydrophobic drug simulants maintains the same loading efficiencies as those of loading each drug simulant alone. A negative correlation between liposome size and FRR is also confirmed. Unloaded liposomes and hydrophilic drug-loaded liposomes are of the same sizes, and are smaller than the ones loaded with the hydrophobic drug simulants alone or combined. The results suggest tunable liposome size and drug loading efficiency with the MHF technique. This provides evidence to encourage further studies of microfluidic liposome fabrication in the pharmaceutical industry.


Assuntos
Hidrodinâmica , Dispositivos Lab-On-A-Chip , Lipossomos/química , Preparações Farmacêuticas/química , Interações Hidrofóbicas e Hidrofílicas , Oxazinas/química
10.
Langmuir ; 34(30): 9025-9035, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29961336

RESUMO

In this study, we prepare giant lipid vesicles using vapor-deposited charged microporous poly(methacrylic acid- co-ethylene glycol diacrylate) polymer membranes with different morphologies and thicknesses. Our results suggest that vesicle formation is favored by thinner, more structured porous hydrogel substrates. Electrostatic interactions between the polymer and the lipid head groups affect vesicle yield and size distribution. Repulsive electrostatic interactions between the hydrogel and the lipid head groups promote vesicle formation; attractive electrostatic interactions suppress vesicle formation. Ionic strength and sugar concentration are also major parameters affecting the yield and size of giant vesicles. The presence of both ions and sugars in the hydration buffer results in increased vesicle yields. These results indicate that lipid-polymer interactions and osmotic effects in addition to the substrate morphology and surface charge are key factors affecting vesicle formation. Our data suggest that surface chemistry should be designed to tune electrostatic interactions with the lipid mixture of interest to promote vesicle formation. This vapor-deposited hydrogel fabrication technique offers tunability over the physicochemical properties of the hydrogel substrate for the production of giant vesicles with different sizes and compositions.

11.
Soft Matter ; 13(33): 5580-5588, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28730206

RESUMO

Giant Unilamellar Vesicles (GUVs) prepared from phospholipids are becoming popular membrane model systems for use in biophysical studies. The quality, size and yield of GUVs depend on the preparation method used to obtain them. In this study, hydrogels consisting of dextran polymers crosslinked by poly(ethylene glycol) (DexPEG) were used as hydrophilic frameworks for the preparation of vesicle suspensions under physiological ionic strength conditions. A comparative study was conducted using hydrogels with varied physicochemical properties to evaluate their performance for GUV production. The prepared GUVs were quantified by flow cytometry using the Coulter Principle to determine the yield and size distribution. We find that hydrogels of lower mechanical strength, increased swellability and decreased lipid interaction favour GUV production, while their resulting size is determined by the surface roughness of the hydrogel film. Moreover, we embedded polymersomes into the crosslinked hydrogel network, creating a DexPEG - polymersome hybrid film. The re-hydration of lipids on those hybrid substrates led to the production of GUVs and the efficient encapsulation of polymersomes in the lumen of GUVs.

12.
Proc Natl Acad Sci U S A ; 111(42): 15013-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25246553

RESUMO

Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Benzofenonas , Impedância Elétrica , Eletrônica , Desenho de Equipamento , Fluorocarbonos/química , Cetonas/química , Teste de Materiais , Polietilenoglicóis/química , Polímeros
13.
Biophys J ; 110(11): 2486-2495, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276266

RESUMO

Although the properties of the cell plasma membrane lipid bilayer are broadly understood to affect integral membrane proteins, details of these interactions are poorly understood. This is particularly the case for the large family of G protein-coupled receptors (GPCRs). Here, we examine the lipid dependence of the human serotonin 5-HT1A receptor, a GPCR that is central to neuronal function. We incorporate the protein in synthetic bilayers of controlled composition together with a fluorescent reporting system that detects GPCR-catalyzed activation of G protein to measure receptor-catalyzed oligonucleotide exchange. Our results show that increased membrane order induced by sterols and sphingomyelin increases receptor-catalyzed oligonucleotide exchange. Increasing membrane elastic curvature stress also increases this exchange. These results reveal the broad dependence that the 5-HT1A receptor has on plasma membrane properties, demonstrating that membrane lipid composition is a biochemical control parameter and highlighting the possibility that compositional changes related to aging, diet, or disease could impact cell signaling functions.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Receptor 5-HT1A de Serotonina/metabolismo , Membrana Celular/metabolismo , Elasticidade , Humanos , Microscopia Confocal , Estresse Mecânico , Lipossomas Unilamelares/química
14.
J Biol Chem ; 290(43): 25782-93, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26283787

RESUMO

Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet ß-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Microscopia de Fluorescência , Ligação Proteica , Ratos
15.
Small ; 12(38): 5256-5260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27529518

RESUMO

G protein-coupled receptor (GPCR) is incorporated into polymeric vesicles made up of diblock copolymer bilayers. Successfully incorporated GPCRs exhibit correct biased physiological orientation and respond to various ligands. After extended dehydrated storage via lyophilization and subsequent rehydration, diblock copolymer polymersomes retain their shape and incorporated GPCR retains its function.


Assuntos
Polímeros/química , Receptores Acoplados a Proteínas G/metabolismo , Fluorescência , Liofilização , Bicamadas Lipídicas/química , Receptor 5-HT1A de Serotonina/metabolismo , Soluções , Lipossomas Unilamelares/química
16.
Langmuir ; 32(48): 12702-12709, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934517

RESUMO

While current research is centered on observing biophysical properties and phenomena in giant unilamellar vesicles (GUVs), little is known about fabrication parameters that control GUV formation. Using different lipids and rehydration buffers, we directly observe varying dynamics of hydrogel-assisted GUV formation via fluorescence microscopy. We observe the effects of buffer ionic strength, osmolarity, agarose density, and pH on the formation of GUVs using neutral and charged lipids. We find that increasing rehydration buffer ionic strength correlates with increased vesicle size and rate of GUV formation. Increasing buffer acidity increased the rate of GUV formation, while more basic environments slowed the rate. For buffers containing 500 mM sucrose, GUV formation was overall inhibited and only tubules formed. Observations of GUV formation dynamics elucidate parametric effects of charge, ionic strength, pH, and osmolarity, demonstrating the versatility of this biomimetic platform.


Assuntos
Hidrogéis/química , Lipídeos/química , Lipossomas Unilamelares/química , Materiais Biomiméticos/química , Microscopia de Fluorescência , Sefarose
17.
Langmuir ; 32(10): 2450-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26866900

RESUMO

Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.

18.
Langmuir ; 32(3): 779-86, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26704691

RESUMO

Lipid oxidation has been linked to plasma membrane damage leading to cell death. In previous work, we examined the effect of oxidation on bilayer permeability by replacing defined amounts of an unsaturated lipid species with the corresponding phospholipid product that would result from oxidative tail scission of that species. This study adds the cleaved tail fragment, better mimicking the chemical results of oxidation. Permeability of PEG12-NBD, a small, uncharged molecule, was measured for vesicles with oxidation concentration corresponding to between 0 and 18 mol % of total lipid content. Permeability was measured using a microfluidic trap to capture the vesicles and spinning disk confocal microscopy (SDCM) to measure the transport of fluorescent PEG12-NBD at the equatorial plane. The thicknesses of lipid bilayers containing oxidized species were estimated by measuring capacitance of a black lipid membrane while simultaneously measuring bilayer area. We found that relative to chemically modeled oxidized bilayers without tail fragments, bilayers containing cleaved tail groups were less permeable for the same degree of oxidation. Curiously, membrane capacitance measurements indicated that the addition of tail fragments to chemically modeled oxidized bilayers also thinned these bilayers relative to samples with no tail fragments; in other words, the more permeable membranes were thicker. Above 12.5% chemically modeled oxidation, compositions both with and without the cleaved tail groups showed pore formation. This work highlights the complexity of the relationship between chemically modeled lipid bilayer oxidation and cell membrane properties.


Assuntos
Colesterol/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Avidina/química , Azóis/química , Biotina/química , Permeabilidade da Membrana Celular , Capacitância Elétrica , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Nitrobenzenos/química , Oxirredução , Polietilenoglicóis/química , Rodaminas/química , Eletricidade Estática
19.
Biochim Biophys Acta ; 1838(10): 2615-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24998358

RESUMO

We have studied the dynamics of Lissamine Rhodamine B dye sensitization-induced oxidation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs), where the progression of the underlying chemical processes was followed via vesicle membrane area changes. The surface-area-to-volume ratio of our spherical GUVs increased after as little as ten seconds of irradiation. The membrane area expansion was coupled with high amplitude fluctuations not typical of GUVs in isoosmotic conditions. To accurately measure the area of deformed and fluctuating membranes, we utilized a dual-beam optical trap (DBOT) to stretch GUV membranes into a geometrically regular shape. Further oxidation led to vesicle contraction, and the GUVs became tense, with micron-scale pores forming in the bilayer. We analyzed the GUV morphological behaviors as two consecutive rate-limiting steps. We also considered the effects of altering DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhDPPE) concentrations. The resulting kinetic model allows us to measure how lipid molecular area changes during oxidation, as well as to determine the rate constants controlling how quickly oxidation products are formed. Controlled membrane oxidation leading to permeabilization is also a potential tool for drug delivery based on engineered photosensitizer-containing lipid vesicles.


Assuntos
Membranas Artificiais , Fosfatidilcolinas/química , Rodaminas/química , Cinética , Oxirredução
20.
Soft Matter ; 11(3): 499-505, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415555

RESUMO

Oxidation of unsaturated lipids in cellular membranes has been shown to cause severe membrane damage and potentially cell death. The presence of oxidized lipid species in the membrane is known to cause changes in membrane properties, such as decreased fluidity. This study uses giant unilamellar vesicles (GUVs) to measure passive transport across membranes containing defined concentrations of oxidized lipid species. GUVs consisting of a saturated phospholipid, an unsaturated phospholipid, and cholesterol were used as model membranes. By replacing defined amounts of the unsaturated lipid with a corresponding oxidized product, the oxidation process could be mimicked, yielding vesicles of varying oxidized lipid concentration. Oxidized lipid concentration was varied from 0 mol% to 18 mol% of the total lipid concentration. Passive transport of PEG12-NBD, an uncharged fluorescent molecule, was measured using a microfluidic trap to capture the GUVs and spinning disk confocal microscopy (SDCM) to track the transport of a fluorescent species in the equatorial plane of each GUV. Membrane permeability was determined by fitting the resulting concentration profiles to a finite difference model of diffusion and permeation around and through the membrane. Experiments showed three permeability regimes. Without oxidation, transport was slow, with a measured permeability on the order of 1.5 × 10(-6) cm s(-1). At 2.5-10% oxidized species permeation was fast (1.5 × 10(-5) cm s(-1)). Above 12.5% oxidized species, the bilayer was disrupted by the formation of pore defects. As passive transport is an important mechanism for drug delivery, understanding the relationship between oxidation and permeation could provide insight into the pharmaceutical characteristics of tissues with oxidative damage.


Assuntos
Bicamadas Lipídicas/química , Oxigênio/química , Fosfolipídeos/química , Lipossomas Unilamelares/química , Difusão , Oxirredução , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA