Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Biol ; 21(1): 21, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737754

RESUMO

BACKGROUND: In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS: We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS: We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.


Assuntos
Cadeias Leves de Imunoglobulina , Mieloma Múltiplo , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloide/metabolismo , Sequência de Aminoácidos , Proteólise
2.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298831

RESUMO

Newcastle disease virus (NDV) is one of the most serious contagions affecting domestic poultry and other avian species. It causes high morbidity and mortality, resulting in huge economic losses to the poultry industry worldwide. Despite vaccination, NDV outbreaks increase the need for alternative prevention and control means. In this study, we have screened fractions of Buthus occitanus tunetanus (Bot) scorpion venom and isolated the first scorpion peptide inhibiting the NDV multiplication. It showed a dose dependent effect on NDV growth in vitro, with an IC50 of 0.69 µM, and a low cytotoxicity on cultured Vero cells (CC50 > 55 µM). Furthermore, tests carried out in specific pathogen-free embryonated chicken eggs demonstrated that the isolated peptide has a protective effect on chicken embryos against NDV, and reduced by 73% the virus titer in allantoic fluid. The N-terminal sequence, as well as the number of cysteine residues of the isolated peptide, showed that it belongs to the scorpion venom Chlorotoxin-like peptides family, which led us to designate it "BotCl". Interestingly, at 10 µg/mL, BotCl showed an inhibiting effect three times higher than its analogue AaCtx, from Androctonus australis (Aa) scorpion venom, on NDV development. Altogether, our results highlight the chlorotoxin-like peptides as a new scorpion venom AMPs family.


Assuntos
Vírus da Doença de Newcastle , Venenos de Escorpião , Animais , Chlorocebus aethiops , Embrião de Galinha , Células Vero , Peptídeos/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química , Galinhas , Escorpiões
3.
J Proteome Res ; 20(1): 202-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32929970

RESUMO

The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Bactérias , Cromatografia Líquida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Anal Chem ; 93(30): 10627-10634, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34292722

RESUMO

In multiple myeloma diseases, monoclonal immunoglobulin light chains (LCs) are abundantly produced, with, as a consequence in some cases, the formation of deposits affecting various organs, such as the kidney, while in other cases remaining soluble up to concentrations of several g·L-1 in plasma. The exact factors crucial for the solubility of LCs are poorly understood, but it can be hypothesized that their amino acid sequence plays an important role. Determining the precise sequences of patient-derived LCs is therefore highly desirable. We establish here a novel de novo sequencing workflow for patient-derived LCs, based on the combination of bottom-up and top-down proteomics without database search. PEAKS is used for the de novo sequencing of peptides that are further assembled into full length LC sequences using ALPS. Top-down proteomics provides the molecular masses of proteoforms and allows the exact determination of the amino acid sequence including all posttranslational modifications. This pipeline is then used for the complete de novo sequencing of LCs extracted from the urine of 10 patients with multiple myeloma. We show that for the bottom-up part, digestions with trypsin and Nepenthes digestive fluid are sufficient to produce overlapping peptides able to generate the best sequence candidates. Top-down proteomics is absolutely required to achieve 100% final sequence coverage and characterize clinical samples containing several LCs. Our work highlights an unexpected range of modifications.


Assuntos
Mieloma Múltiplo , Sequência de Aminoácidos , Humanos , Cadeias Leves de Imunoglobulina/genética , Peptídeos/genética , Proteômica , Análise de Sequência de Proteína
5.
J Biol Chem ; 293(16): 6000-6010, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29483188

RESUMO

Lytic transglycosylases (LTs) are a class of enzymes important for the recycling and metabolism of peptidoglycan (PG). LTs cleave the ß-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc in the PG glycan strand, resulting in the concomitant formation of 1,6-anhydro-N-acetylmuramic acid and GlcNAc. No LTs reported to date have utilized chitins as substrates, despite the fact that chitins are GlcNAc polymers linked via ß-1,4-glycosidic bonds, which are the known site of chemical activity for LTs. Here, we demonstrate enzymatically that LtgA, a non-canonical, substrate-permissive LT from Neisseria meningitidis utilizes chitopentaose ((GlcNAc)5) as a substrate to produce three newly identified sugars: 1,6-anhydro-chitobiose, 1,6-anhydro-chitotriose, and 1,6-anhydro-chitotetraose. Although LTs have been widely studied, their complex reactions have not previously been visualized in the crystalline state because macromolecular PG is insoluble. Here, we visualized the cleavage of the glycosidic bond and the liberation of GlcNAc-derived residues by LtgA, followed by the synthesis of atypical 1,6-anhydro-GlcNAc derivatives. In addition to the newly identified anhydro-chitin products, we identified trapped intermediates, unpredicted substrate rearrangements, sugar distortions, and a conserved crystallographic water molecule bound to the catalytic glutamate of a high-resolution native LT. This study enabled us to propose a revised alternative mechanism for LtgA that could also be applicable to other LTs. Our work contributes to the understanding of the mechanisms of LTs in bacterial cell wall biology.


Assuntos
Glicosiltransferases/metabolismo , Neisseria meningitidis Sorogrupo B/enzimologia , Peptidoglicano/metabolismo , Quitinases/química , Quitinases/metabolismo , Cristalografia por Raios X , Glicosídeos/química , Glicosídeos/metabolismo , Glicosiltransferases/química , Meningite Meningocócica/microbiologia , Modelos Moleculares , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Neisseria meningitidis Sorogrupo B/química , Neisseria meningitidis Sorogrupo B/metabolismo , Peptidoglicano/química , Conformação Proteica
6.
Mol Microbiol ; 101(6): 924-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260845

RESUMO

Type II secretion systems (T2SSs) promote secretion of folded proteins playing important roles in nutrient acquisition, adaptation and virulence of Gram-negative bacteria. Protein secretion is associated with the assembly of type 4 pilus (T4P)-like fibres called pseudopili. Initially membrane embedded, pseudopilin and T4 pilin subunits share conserved transmembrane segments containing an invariant Glu residue at the fifth position, E5. Mutations of E5 in major T4 pilins and in PulG, the major pseudopilin of the Klebsiella T2SS abolish fibre assembly and function. Among the four minor pseudopilins, only PulH required E5 for secretion of pullulanase, the substrate of the Pul T2SS. Mass-spectrometry analysis of pili resulting from the co-assembly of PulG(E5A) variant and PulG(WT) ruled out an E5 role in pilin processing and N-methylation. A bacterial two-hybrid analysis revealed interactions of the full-length pseudopilins PulG and PulH with the PulJ-PulI-PulK priming complex and with the assembly factors PulM and PulF. Remarkably, PulG(E5A) and PulH(E5A) variants were defective in interaction with PulM but not with PulF, and co-purification experiments confirmed the E5-dependent interaction between native PulM and PulG. These results reveal the role of E5 in a recruitment step critical for assembly of the functional T2SS, likely relevant to T4P assembly systems.


Assuntos
Proteínas de Fímbrias/metabolismo , Klebsiella/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Sequência de Aminoácidos , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Glutamina/metabolismo , Glicosídeo Hidrolases/metabolismo , Klebsiella/genética , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Dobramento de Proteína
7.
PLoS Pathog ; 11(4): e1004835, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25876066

RESUMO

The success of S. pneumoniae as a major human pathogen is largely due to its remarkable genomic plasticity, allowing efficient escape from antimicrobials action and host immune response. Natural transformation, or the active uptake and chromosomal integration of exogenous DNA during the transitory differentiated state competence, is the main mechanism for horizontal gene transfer and genomic makeover in pneumococci. Although transforming DNA has been proposed to be captured by Type 4 pili (T4P) in Gram-negative bacteria, and a competence-inducible comG operon encoding proteins homologous to T4P-biogenesis components is present in transformable Gram-positive bacteria, a prevailing hypothesis has been that S. pneumoniae assembles only short pseudopili to destabilize the cell wall for DNA entry. We recently identified a micrometer-sized T4P-like pilus on competent pneumococci, which likely serves as initial DNA receptor. A subsequent study, however, visualized a different structure--short, 'plaited' polymers--released in the medium of competent S. pneumoniae. Biochemical observation of concurrent pilin secretion led the authors to propose that the 'plaited' structures correspond to transformation pili acting as peptidoglycan drills that leave DNA entry pores upon secretion. Here we show that the 'plaited' filaments are not related to natural transformation as they are released by non-competent pneumococci, as well as by cells with disrupted pilus biogenesis components. Combining electron microscopy visualization with structural, biochemical and proteomic analyses, we further identify the 'plaited' polymers as spirosomes: macromolecular assemblies of the fermentative acetaldehyde-alcohol dehydrogenase enzyme AdhE that is well conserved in a broad range of Gram-positive and Gram-negative bacteria.


Assuntos
Fímbrias Bacterianas/ultraestrutura , Streptococcus pneumoniae/ultraestrutura , Transferência Genética Horizontal , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Proteômica , Streptococcus pneumoniae/genética , Transformação Bacteriana/genética
8.
PLoS Pathog ; 11(12): e1005312, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641249

RESUMO

Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Cromatografia Líquida , Modelos Animais de Doenças , Helicobacter/genética , Helicobacter/metabolismo , Helicobacter/patogenicidade , Helicobacter pylori/metabolismo , Immunoblotting , Camundongos , Dados de Sequência Molecular , Níquel/metabolismo , Filogenia , Proteínas/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Urease/metabolismo
9.
PLoS Pathog ; 11(9): e1005162, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26367394

RESUMO

The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences.


Assuntos
Endotélio Vascular/microbiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Evasão da Resposta Imune , Modelos Moleculares , Neisseria meningitidis/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Aderência Bacteriana , Linhagem Celular , Células Cultivadas , Sequência Conservada , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/imunologia , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Glicosilação , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/patologia , Microscopia Eletrônica de Transmissão , Neisseria meningitidis/imunologia , Neisseria meningitidis/ultraestrutura , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Propriedades de Superfície
10.
PLoS Pathog ; 9(6): e1003473, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825953

RESUMO

Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/imunologia , Resistência a Medicamentos/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/imunologia , Humanos , Evasão da Resposta Imune/fisiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade
11.
Int J Syst Evol Microbiol ; 65(12): 4621-4626, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26394885

RESUMO

A spore-forming, rod-shaped Gram-strain-positive bacterium, strain 656.84T, was isolated from human faeces in 1984. It contained anteiso-C15 : 0 as the major cellular fatty acid, meso-diaminopimelic acid was found in the cell wall peptidoglycan, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and aminophospholipids as the major components, and the predominant menaquinone was MK-7. The DNA G+C content was 52.9 mol%. The results of comparative 16S rRNA gene sequence studies placed strain 656.84T within the genus Paenibacillus. Its closest phylogenetic relatives were Paenibacillus barengoltzii and Paenibacillus timonensis. Levels of DNA-DNA relatedness between strain 656.84T and Paenibacillus timonensis CIP 108005T and Paenibacillus barengoltzii CIP 109354T were 17.3 % and 36.8 %, respectively, indicating that strain 656.84T represents a distinct species. On the basis of phenotypic and genotypic results, strain 656.84T is considered to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus faecis sp. nov. is proposed; the type strain is 656.84T ( = DSM 23593T = CIP 101062T).


Assuntos
Fezes/microbiologia , Paenibacillus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , França , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Proteomics ; 14(10): 1141-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24459079

RESUMO

In pathogenic bacteria, posttranslationally modified proteins have been found to promote bacterial survival, replication, and evasion from the host immune system. In the human pathogen Neisseria meningitidis, the protein PilE (15-18 kDa) is the major building block of type IV pili, extracellular filamentous organelles that play a major role in mediating pathogenesis. Previous reports have shown that PilE can be expressed as a number of different proteoforms, each harboring its own set of PTMs and that specific proteoforms are key in promoting bacterial virulence. Efficient tools that allow complete PTM mapping of proteins involved in bacterial infection are therefore strongly needed. As we show in this study, a simple combination of mass profiling and bottom-up proteomics is fundamentally unable to achieve this goal when more than two proteoforms are present simultaneously. In a N. meningitidis strain isolated from a patient with meningitis, mass profiling revealed the presence of four major proteoforms of PilE, in a 1:1:1:1 ratio. Due to the complexity of the sample, a top-down approach was required to achieve complete PTM mapping for all four proteoforms, highlighting an unprecedented extent of glycosylation. Top-down MS therefore appears to be a promising tool for the analysis of highly posttranslationally modified proteins involved in bacterial virulence.


Assuntos
Proteínas de Fímbrias/análise , Proteínas de Fímbrias/química , Espectrometria de Massas/métodos , Neisseria meningitidis/química , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional
13.
J Struct Biol ; 188(1): 71-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25172991

RESUMO

Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in Escherichiacoli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.


Assuntos
Perfilação da Expressão Gênica/métodos , Imageamento por Ressonância Magnética , Biossíntese de Proteínas , Proteínas da Matriz Viral/química , Aminoácidos/química , Animais , Drosophila/química , Drosophila/genética , Humanos , Radioisótopos de Nitrogênio/química , Células Sf9 , Spodoptera
14.
Anal Bioanal Chem ; 405(15): 5341-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584713

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are one of the most important families in the ligand-gated ion channel superfamily due to their involvement in primordial brain functions and in several neurodegenerative pathologies. The discovery of new ligands which can bind with high affinity and selectivity to nAChR subtypes is of prime interest in order to study these receptors and to potentially discover new drugs for treating various pathologies. Predatory cone snails of the genus Conus hunt their prey using venoms containing a large number of small, highly structured peptides called conotoxins. Conotoxins are classified in different structural families and target a large panel of receptors and ion channels. Interestingly, nAChRs represent the only subgroup for which Conus has developed seven distinct families of conotoxins. Conus venoms have thus received much attention as they could represent a potential source of selective ligands of nAChR subtypes. We describe the mass spectrometric-based approaches which led to the discovery of a novel α-conotoxin targeting muscular nAChR from the venom of Conus ermineus. The presence of several posttranslational modifications complicated the N-terminal sequencing. To discriminate between the different possible sequences, analogs with variable N-terminus were synthesized and fragmented by MS/MS. Understanding the fragmentation pathways in the low m/z range appeared crucial to determine the right sequence. The biological activity of this novel α-conotoxin (α-EIIA) that belongs to the unusual α4/4 subfamily was determined by binding experiments. The results revealed not only its selectivity for the muscular nAChR, but also a clear discrimination between the two binding sites described for this receptor.


Assuntos
Conotoxinas/análise , Caramujo Conus/fisiologia , Venenos de Moluscos/química , Acetilcolina/química , Acetilcolina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
15.
Cell Rep ; 42(4): 112405, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071535

RESUMO

Upon activation, vinculin reinforces cytoskeletal anchorage during cell adhesion. Activating ligands classically disrupt intramolecular interactions between the vinculin head and tail domains that bind to actin filaments. Here, we show that Shigella IpaA triggers major allosteric changes in the head domain, leading to vinculin homo-oligomerization. Through the cooperative binding of its three vinculin-binding sites (VBSs), IpaA induces a striking reorientation of the D1 and D2 head subdomains associated with vinculin oligomerization. IpaA thus acts as a catalyst producing vinculin clusters that bundle actin at a distance from the activation site and trigger the formation of highly stable adhesions resisting the action of actin relaxing drugs. Unlike canonical activation, vinculin homo-oligomers induced by IpaA appear to keep a persistent imprint of the activated state in addition to their bundling activity, accounting for stable cell adhesion independent of force transduction and relevant to bacterial invasion.


Assuntos
Proteínas de Bactérias , Shigella , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Actinas/metabolismo , Vinculina/metabolismo , Shigella/metabolismo , Ligação Proteica
16.
RSC Chem Biol ; 3(1): 85-95, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128412

RESUMO

Ruthenium complexes have emerged as a promising class of compounds for use as photosensitizers (PSs) in photodynamic therapy (PDT) due to their attractive photophysical properties and relative ease of chemical alteration. While promising, they generally are not inherently targeting to disease sites and may therefore be prone to side effects and require higher doses. Aptamers are short oligonucleotides that bind specific targets with high affinity. One such aptamer is AS1411, a nucleolin targeting, G-quadruplex forming, DNA aptamer. Here we present the first example of direct conjugation of a Ru(ii) polypyridyl complex-based PS to an aptamer and an assessment of its in vitro cancer cell specific photosensitization including discussion of the challenges faced.

17.
Metallomics ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36002005

RESUMO

Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking, and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics, and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OGs) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme oxygenases. The expansion of histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.


Assuntos
Helicobacter pylori , Helicobacter , Proteínas de Bactérias/metabolismo , Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Histidina/metabolismo , Níquel/metabolismo , Proteínas , Estômago , Urease/metabolismo
18.
J Mol Endocrinol ; 69(3): 377-390, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900852

RESUMO

Retinoid X receptors (RXRα, ß, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors. Based on available crystal structures, we introduced a series of amino acid substitutions into the ligand-binding pocket of all three RXR subtypes in order to alter their binding properties. Subsequent characterization using a battery of cell-based and in vitro assays led to the identification of a double mutation abolishing the binding of any ligand while keeping the other receptor functions intact and a triple mutation that selectively impairs interaction with natural rexinoids but not with some synthetic ligands. We also report crystal structures that help understand the specific ligand-binding capabilities of both variants. These RXR variants, either fully disabled for ligand binding or retaining the property of being activated by synthetic compounds, represent unique tools that could be used in future studies to probe the presence of active endogenous rexinoids in tissues/organs and to investigate their role in vivo. Last, we provide data suggesting a possible involvement of fatty acids in the weak interaction of RXRs with corepressors.


Assuntos
Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Regulação da Expressão Gênica , Ligantes , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo
19.
Commun Biol ; 5(1): 355, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418619

RESUMO

ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.


Assuntos
Proteínas de Escherichia coli , Serratia marcescens , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme/metabolismo , Ligação Proteica , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo
20.
FEBS Open Bio ; 11(7): 1867-1892, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715301

RESUMO

Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in the world. Despite the involvement of B. occitanus scorpion in severe cases of envenomation in Morocco, no study has focused yet on the proteomic composition of the Moroccan B. occitanus scorpion venom. Mass spectrometry-based proteomic techniques are commonly used in the study of scorpion venoms. The implementation of top-down and bottom-up approaches for proteomic analyses facilitates screening by allowing a global view of the structural aspects of such complex matrices. Here, we provide a partial overview of the venom of B. occitanus scorpion, in order to explore the diversity of its toxins and hereafter understand their effects. To this end, a combination of top-down and bottom-up approaches was applied using nano-high liquid chromatography coupled to nano-electrospray tandem mass spectrometry (nano-LC-ESI MS/MS). The LC-MS results showed that B. occitanus venom contains around 200 molecular masses ranging from 1868 to 16 720 Da, the most representative of which are those between 5000 and 8000 Da. Interestingly, combined top-down and bottom-up LC-MS/MS results allowed the identification of several toxins, which were mainly those acting on ion channels, including those targeting sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic peptides, myotropic neuropeptides, and hypothetical secreted proteins. This study reveals the molecular diversity of B. occitanus scorpion venom and identifies components that may have useful pharmacological activities.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Cromatografia Líquida , Proteômica , Venenos de Escorpião/química , Escorpiões/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA