Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569529

RESUMO

Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Camundongos , Animais , Receptor fas/genética , Receptor fas/metabolismo , Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Azacitidina/farmacologia , Metilação de DNA , Ilhas de CpG , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887382

RESUMO

Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Biomarcadores , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Criança , DNA , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Insulina/metabolismo , Osteossarcoma/diagnóstico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Fatores de Crescimento/metabolismo
3.
Cancer ; 124(12): 2607-2620, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29624648

RESUMO

BACKGROUND: Central nervous system Langerhans cell histiocytosis (CNS-LCH) brain involvement may include mass lesions and/or a neurodegenerative disease (LCH-ND) of unknown etiology. The goal of this study was to define the mechanisms of pathogenesis that drive CNS-LCH. METHODS: Cerebrospinal fluid (CSF) biomarkers including CSF proteins and extracellular BRAFV600E DNA were analyzed in CSF from patients with CNS-LCH lesions compared with patients with brain tumors and other neurodegenerative conditions. Additionally, the presence of BRAFV600E was tested in peripheral mononuclear blood cells (PBMCs) as well as brain biopsies from LCH-ND patients, and the response to BRAF-V600E inhibitor was evaluated in 4 patients with progressive disease. RESULTS: Osteopontin was the only consistently elevated CSF protein in patients with CNS-LCH compared with patients with other brain pathologies. BRAFV600E DNA was detected in CSF of only 2/20 (10%) cases, both with LCH-ND and active lesions outside the CNS. However, BRAFV600E+ PBMCs were detected with significantly higher frequency at all stages of therapy in LCH patients who developed LCH-ND. Brain biopsies of patients with LCH-ND demonstrated diffuse perivascular infiltration by BRAFV600E+ cells with monocyte phenotype (CD14+ CD33+ CD163+ P2RY12- ) and associated osteopontin expression. Three of 4 patients with LCH-ND treated with BRAF-V600E inhibitor experienced significant clinical and radiologic improvement. CONCLUSION: In LCH-ND patients, BRAFV600E+ cells in PBMCs and infiltrating myeloid/monocytic cells in the brain is consistent with LCH-ND as an active demyelinating process arising from a mutated hematopoietic precursor from which LCH lesion CD207+ cells are also derived. Therapy directed against myeloid precursors with activated MAPK signaling may be effective for LCH-ND. Cancer 2018;124:2607-20. © 2018 American Cancer Society.


Assuntos
Neoplasias Encefálicas/diagnóstico , Histiocitose de Células de Langerhans/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Osteopontina/líquido cefalorraquidiano , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biópsia , Encéfalo/patologia , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Células-Tronco Hematopoéticas/patologia , Histiocitose de Células de Langerhans/líquido cefalorraquidiano , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Estudos Retrospectivos , Adulto Jovem
4.
Cancer ; 123(1): 144-154, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27529817

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common malignant pediatric bone tumor. The identification of novel biomarkers for early prognostication will facilitate risk-based stratification and therapy. This study investigated the significance of circulating cytokines/chemokines for predicting the prognosis at the initial diagnosis. METHODS: Luminex assays were used to measure cytokine/chemokine concentrations in blood samples from a discovery cohort of OS patients from Texas Children's Hospital (n = 37) and an independent validation cohort obtained from the Children's Oncology Group (n = 233). After the validation of the biomarkers, a multivariate model was constructed to stratify the patients into risk groups. RESULTS: The circulating concentrations of C-X-C motif chemokine ligand 10 (CXCL10), Fms-related tyrosine kinase 3 ligand (FLT3LG), interferon γ (IFNG), and C-C motif chemokine ligand 4 (CCL4) were significantly associated with overall survival in both cohorts. Among these candidates, CXCL10 and FLT3LG were independent of the existing prognostic factor, metastasis at diagnosis, and CCL4 further discriminated cancer cases from controls. CXCL10, FLT3LG, and the metastatic status at diagnosis were combined to develop a multivariate model that significantly stratified the patients into 4 distinct risk groups (P = 1.6 × 10-8 ). The survival analysis showed that the 5-year overall survival rates for the low-, intermediate-, high-, and very high-risk groups were 77%, 54%, 47%, and 10%, respectively, whereas the 5-year event-free survival rates were 64%, 47%, 27%, and 0%, respectively. Neither CXCL10 nor FLT3LG tumor expression was significantly associated with survival. CONCLUSIONS: High circulating levels of CXCL10 and FLT3LG predicted worse survival for patients with OS. Because both CXCL10 and FL3LG axes are potentially targetable, further study may lead to novel risk-based stratification and therapy for OS. Cancer 2017;144-154. © 2016 American Cancer Society.


Assuntos
Neoplasias Ósseas/sangue , Neoplasias Ósseas/patologia , Quimiocina CXCL10/sangue , Proteínas de Membrana/sangue , Osteossarcoma/sangue , Osteossarcoma/patologia , Adolescente , Adulto , Biomarcadores Tumorais/sangue , Neoplasias Ósseas/mortalidade , Criança , Pré-Escolar , Citocinas/sangue , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Osteossarcoma/mortalidade , Prognóstico , Risco , Análise de Sobrevida , Taxa de Sobrevida , Texas , Adulto Jovem
5.
Pediatr Blood Cancer ; 64(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28544777

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common pediatric bone cancer.  Despite advances in treatment regimens, the survival rate remains 60-70%.  There is an urgent need to identify prognostic biomarkers, so that targeted therapies can be developed to improve the outcome. PROCEDURE: Our laboratory has previously identified that circulating serum amyloid A (SAA) and CXC chemokine ligand 4 (CXCL4) are upregulated in patients with OS.  In this study, we tested if they could be used as prognostic biomarkers.  We used enzyme-linked immunosorbent assays to measure their concentrations in serum samples (n = 233) and immunohistochemistry to examine their expressions in primary tumors (n = 37).  Prognostic significance of the serum concentrations and tumor expressions of the biomarkers was then evaluated. RESULTS: Patients with "high SAA" and "low CXCL4" circulating levels at diagnosis significantly correlated with a worse outcome (HR = 1.68, P = 0.014), which was independent of the metastatic status.  These patients also exhibited a significantly higher rate of poor histologic response to chemotherapy.  Furthermore, low tumor expression of CXCL4 correlated with poor survival (HR = 3.57, P = 0.005). CONCLUSIONS: Our results demonstrate that circulating SAA and CXCL4 may serve as prognostic biomarkers in OS.  Targeting CXCL4 has been reported, suggesting that it may be exploited as a therapeutic target in OS.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Ósseas/mortalidade , Osteossarcoma/mortalidade , Fator Plaquetário 4/sangue , Proteína Amiloide A Sérica/análise , Adolescente , Adulto , Neoplasias Ósseas/sangue , Neoplasias Ósseas/diagnóstico , Criança , Pré-Escolar , Humanos , Osteossarcoma/sangue , Osteossarcoma/diagnóstico , Prognóstico , Adulto Jovem
6.
Genes Chromosomes Cancer ; 54(12): 796-808, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26355645

RESUMO

Osteosarcomas (OSs) are characterized by high levels of genomic instability (GI). To gain insights into the GI and its contribution toward understanding the genetic basis of OS, we characterized 19 primary and 13 metastatic mouse tumors in a genetically engineered novel mouse model of OS by a combination of genomic techniques. Through the bone-specific deletion of the wild-type Trp53 locus or activation of a metastatic-promoting missense R172Hp53 allele, C57BL/6 mice developed either localized or metastatic OS. Subsequent tumors were isolated and primary cultures created from primary bone and/or distal metastatic lesions, for example, lung and liver. These tumors exhibited high levels of GI with complex chromosomal rearrangements, amplifications, and deletions comparable to human OS. The combined genomic approaches identified frequent amplification of chromosome 15D1 and loss of 11B4 by CGH and/or SKY. Both 15D1 and 11B4 have homology with frequently altered chromosomal bands 8q24 and 17p13 in human OS, respectively. Subsequent array CGH, FISH, and qRT-PCR analysis identified coamplification and overexpression of Myc/Pvt1 transcripts from the 15D1 amplicon and loss and decreased expression of the Nlrp1b from 11B4. The Nlrp1 gene is the key mediator of apoptosis and interacts strongly with caspase 2.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias Ósseas/genética , Osteossarcoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Sarcoma Experimental/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Ósseas/patologia , Caspase 2/metabolismo , Deleção Cromossômica , Amplificação de Genes , Loci Gênicos , Instabilidade Genômica , Homozigoto , Hibridização in Situ Fluorescente , Cariotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteossarcoma/patologia , Cultura Primária de Células , Sarcoma Experimental/patologia , Regulação para Cima
7.
Br J Haematol ; 170(5): 704-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25974135

RESUMO

Approximately 50% of children with acute myeloid leukaemia (AML) relapse, despite aggressive chemotherapy. The bone marrow stromal environment protects leukaemia cells from chemotherapy (i.e., stroma-induced chemoresistance), eventually leading to recurrence. Our goal is to delineate the mechanisms underlying stroma-mediated chemoresistance in AML. We used two human bone marrow stromal cell lines, HS-5 and HS-27A, which are equally effective in protecting AML cells from chemotherapy-induced apoptosis in AML-stromal co-cultures. We found that CYR61 was highly expressed by stromal cells, and was upregulated in AML cells by both stromal cell lines. CYR61 is a secreted matricellular protein and is associated with cell-intrinsic chemoresistance in other malignancies. Here, we show that blocking stromal CYR61 activity, by neutralization or RNAi, increased mitoxantrone-induced apoptosis in AML cells in AML-stromal co-cultures, providing functional evidence for its role in stroma-mediated chemoresistance. Further, we found that spleen tyrosine kinase (SYK) mediates CYR61 signalling. Exposure to stroma increased SYK expression and activation in AML cells, and this increase required CYR61. SYK inhibition reduced stroma-dependent mitoxantrone resistance in the presence of CYR61, but not in its absence. Therefore, SYK is downstream of CYR61 and contributes to CYR61-mediated mitoxantrone resistance. The CYR61-SYK pathway represents a potential target for reducing stroma-induced chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Proteína Rica em Cisteína 61/biossíntese , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Mitoxantrona/farmacologia , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Masculino , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Quinase Syk , Regulação para Cima/efeitos dos fármacos
8.
J Neurooncol ; 120(2): 293-301, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25115738

RESUMO

Immunobiology of medulloblastoma (MB), the most common malignant brain tumor in children, is poorly understood. Although tumor cells in some MBs were recently shown to express CD1d and be susceptible to Vα24-invariant natural killer T (NKT)-cell cytotoxicity, the clinical relevance of CD1d expression in MB patients remains unknown. We investigated the expression of CD1d in pediatric MBs and correlated with molecular and clinical characteristics. Specifically, we explored if NKT cell therapy can be targeted at a subset of pediatric MBs with poorer prognosis. Particularly, infantile MBs have a worse outcome because radiotherapy is delayed to avoid neurocognitive sequelae. Immunohistochemistry for CD1d was performed on a screening set of 38 primary pediatric MBs. Gene expression of the membrane form of M2 macrophage marker, CD163, was studied in an expanded cohort of 60 tumors. Outcome data was collected prospectively. Thirteen of 38 MBs (34.2 %) expressed CD1d on immunohistochemistry. CD1d was expressed mainly on MB tumor cells, and on some tumor-associated macrophages. Majority (18/22, 82 %) of non sonic-hedgehog/Wingless-activated MBs (group 3 and 4) were CD1d-negative (p = 0.05). A subset of infantile MBs (4/9, 44.4 %) expressed CD1d. Macrophages infiltrating MB expressed CD163 apart from CD1d. Molecular subtypes demonstrated statistical differences in CD163 expression, SHH-tumors were the most enriched (p = 0.006). Molecular and clinical subtypes of pediatric MB exhibit distinct differences in CD1d expression, which have important therapeutic implications. High CD1d expression in infantile MBs offers potential new immunotherapeutic treatment with NKT cell therapy in infants, where treatment is suboptimal due delayed radiotherapy.


Assuntos
Antígenos CD1d/metabolismo , Neoplasias Cerebelares/patologia , Macrófagos/patologia , Meduloblastoma/patologia , Células T Matadoras Naturais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígenos CD1d/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Criança , Pré-Escolar , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Lactente , Macrófagos/metabolismo , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Células T Matadoras Naturais/metabolismo , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Estudos Prospectivos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pediatr Blood Cancer ; 61(4): 593-600, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24249158

RESUMO

BACKGROUNDS: Intracranial germ cell tumors (GCTs) are rare and heterogeneous with very little is known about their pathogenesis and underlying genetic abnormalities. PROCEDURES: In order to identify candidate genes and pathways which are involved in the pathogenesis of these tumors, we have profiled 62 intracranial GCTs for DNA copy number alterations (CNAs) and loss of heterozygosity (LOH) by using single nucleotide polymorphism (SNP) array and quantitative real time PCR (qPCR). RESULTS: Initially 27 cases of tumor tissues with matched blood samples were fully analyzed by SNP microarray and qPCR. Statistical analysis using the genomic identification of significant targets in cancer (GISTIC) tool identified 10 regions of significant copy number gain and 11 regions of significant copy number loss. While overall pattern of genomic aberration was similar between germinoma and nongerminomatous germ cell tumors (NGGCTs), a few subtype-specific peak regions were identified. Analysis by SNP array and qPCR was replicated using an independent cohort of 35 cases. CONCLUSIONS: Frequent aberrations of CCND2 (12p13) and RB1 (13q14) suggest that Cyclin/CDK-RB-E2F pathway might play a critical role in the pathogenesis of intracranial GCTs. Frequent gain of PRDM14 (8q13) implies that transcriptional regulation of primordial germ cell specification might be an important factor in the development of this tumor.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano , Perda de Heterozigosidade , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Adulto Jovem
10.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730671

RESUMO

Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.

11.
BMC Bioinformatics ; 14 Suppl 18: S1, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564171

RESUMO

BACKGROUND: Subtypes are widely found in cancer. They are characterized with different behaviors in clinical and molecular profiles, such as survival rates, gene signature and copy number aberrations (CNAs). While cancer is generally believed to have been caused by genetic aberrations, the number of such events is tremendous in the cancer tissue and only a small subset of them may be tumorigenic. On the other hand, gene expression signature of a subtype represents residuals of the subtype-specific cancer mechanisms. Using high-throughput data to link these factors to define subtype boundaries and identify subtype-specific drivers, is a promising yet largely unexplored topic. RESULTS: We report a systematic method to automate the identification of cancer subtypes and candidate drivers. Specifically, we propose an iterative algorithm that alternates between gene expression clustering and gene signature selection. We applied the method to datasets of the pediatric cerebellar tumor medulloblastoma (MB). The subtyping algorithm consistently converges on multiple datasets of medulloblastoma, and the converged signatures and copy number landscapes are also found to be highly reproducible across the datasets. Based on the identified subtypes, we developed a PCA-based approach for subtype-specific identification of cancer drivers. The top-ranked driver candidates are found to be enriched with known pathways in certain subtypes of MB. This might reveal new understandings for these subtypes. CONCLUSIONS: Our study indicates that subtype-signature defines the subtype boundaries, characterizes the subtype-specific processes and can be used to prioritize signature-related drivers.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica/métodos , Meduloblastoma/genética , Algoritmos , Criança , Análise por Conglomerados , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Taxa de Sobrevida
12.
Pediatr Blood Cancer ; 60(9): 1408-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23512859

RESUMO

BACKGROUND: Medulloblastoma (MB) comprises of four molecular subtypes, Sonic hedgehog (SHH), Wingless (WNT), Groups 3 and 4. WNT-subtype MBs were found to arise from midline of the brainstem occupying the fourth ventricle while SHH-subtype occupied the cerebellar hemisphere in a small subset of patients. PROCEDURE: We tested this hypothesis in a large cohort of pediatric MBs comprising of all four molecular subtypes. RESULTS: We validated in the first comprehensive analysis of tumor location of 60 human MBs representative of the four molecular subtypes, that hemispheric tumors are significantly associated with SHH-subtype MBs while midline tumors with WNT-subtype, Group 3 and 4 MBs (P < 0.001). Nearly half of SHH-subtype MBs were midline. CONCLUSIONS: Tumor location should not be generalized to MB subtypes. SHH-subtype MBs are not exclusively hemispheric and hemispheric MBs are not always SHH-activated. It is imperative to identify subtypes in conjunction with tumor location when exploring currently available targeted therapy.


Assuntos
Neoplasias Cerebelares , Proteínas Hedgehog/genética , Imageamento por Ressonância Magnética , Meduloblastoma , Adolescente , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/classificação , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/genética , Radiografia , Estudos Retrospectivos
13.
Genes Dis ; 10(1): 254-266, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013056

RESUMO

Osteosarcoma is a malignant bone tumor that commonly occurs in the pediatric population. Despite the use of chemotherapy and surgery, metastasis remains to be the leading cause of death in patients with osteosarcoma. We have previously reported that cytoplasmic mislocalization of p27 is associated with a poor outcome in osteosarcoma. In this study, we further show that lysyl oxidase (LOX) expression was associated with p27 mislocalization. LOX is an enigmatic molecule that acts as a tumor suppressor or a metastatic promoter; however, its role in osteosarcoma is still unclear. Hence, we performed both in vitro and in vivo analyses to dissect the role of LOX in osteosarcoma. The result of our survival analysis indicated that LOX expression significantly correlated with a poor outcome in osteosarcoma with or without controlling for the initial metastasis status (P < 0.05). Functionally, we found that higher LOX expression promoted osteosarcoma cell proliferation, migration, and invasiveness in vitro and produced a higher number of mice with pulmonary metastases in an orthotopic xenograft mouse model. Mechanistically, phospho-FAK was increased in osteosarcoma cells with high LOX expression. Our results further showed that FAK inhibition significantly reduced tumor cell proliferation and migration in vitro as well as LOX-mediated metastasis in mice. Together, our findings suggest that there is a novel link between p27 mislocalization and LOX expression. LOX plays a pivotal role in osteosarcoma metastasis by upregulating FAK phosphorylation. FAK inhibition may constitute a promising therapeutic strategy to reduce the development of metastasis in osteosarcoma with LOX overexpression.

14.
Genome Biol ; 24(1): 177, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528411

RESUMO

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Criança , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA Interferente Pequeno , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
15.
Blood Adv ; 7(14): 3725-3734, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042921

RESUMO

Overall survival after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (HCT) using alemtuzumab, fludarabine, and melphalan is associated with high rates of mixed chimerism (MC) and secondary graft failure (GF). We hypothesized that peritransplantation alemtuzumab levels or specific patterns of inflammation would predict these risks. We assessed samples from the Bone Marrow Transplant Clinical Trials Network 1204 (NCT01998633) to study the impact of alemtuzumab levels and cytokine patterns on MC and impending or established secondary GF (defined as donor chimerism <5% after initial engraftment and/or requirement of cellular intervention). Thirty-three patients with hemophagocytic lymphohistiocytosis (n = 25) and other IEIs (n = 8) who underwent HCTs with T-cell-replete grafts were included. Patients with day 0 alemtuzumab levels ≤0.32 µg/mL had a markedly lower incidence of MC, 14.3%, vs 90.9% in patients with levels >0.32 µg/mL (P = .008). Impending or established secondary GF was only observed in patients with day 0 alemtuzumab levels >0.32 µg/mL (P = .08). Unexpectedly, patients with impending or established secondary GF had lower CXCL9 levels. The cumulative incidence of impending or established secondary GF in patients with a day 14+ CXCL9 level ≤2394 pg/mL (day 14+ median) was 73.6% vs 0% in patients with a level >2394 pg/mL (P = .002). CXCL9 levels inversely correlated with alemtuzumab levels. These data suggest a model in which higher levels of alemtuzumab at day 0 deplete donor T cells, inhibit the graft-versus-marrow reaction (thereby suppressing CXCL9 levels), and adversely affect sustained engraftment in the nonmyeloablative HCT setting. This trial was registered at www.clinicaltrials.gov as #NCT01998633.


Assuntos
Anticorpos Monoclonais Humanizados , Transplante de Células-Tronco Hematopoéticas , Humanos , Alemtuzumab/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Melfalan/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doadores de Tecidos , Quimiocina CXCL9
16.
J Immunol ; 184(8): 4557-67, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20220088

RESUMO

Langerhans cell histiocytosis (LCH) is a rare disease characterized by heterogeneous lesions containing CD207(+) Langerhans cells (LCs) and lymphocytes that can arise in almost any tissue and cause significant morbidity and mortality. After decades of research, the cause of LCH remains speculative. A prevailing model suggests that LCH arises from malignant transformation and metastasis of epidermal LCs. In this study, CD207(+) cells and CD3(+) T cells were isolated from LCH lesions to determine cell-specific gene expression. Compared with control epidermal CD207(+) cells, the LCH CD207(+) cells yielded 2113 differentially expressed genes (false discovery rate < 0.01). Surprisingly, the expression of many genes previously associated with LCH, including cell-cycle regulators, proinflammatory cytokines, and chemokines, were not significantly different from control LCs in our study. However, several novel genes whose products activate and recruit T cells to sites of inflammation, including SPP1 (osteopontin), were highly overexpressed in LCH CD207(+) cells. Furthermore, several genes associated with immature myeloid dendritic cells were overexpressed in LCH CD207(+) cells. Compared with the peripheral CD3(+) cells from LCH patients, the LCH lesion CD3(+) cells yielded only 162 differentially regulated genes (false discovery rate < 0.01), and the expression profile of the LCH lesion CD3(+) cells was consistent with an activated regulatory T cell phenotype with increased expression of FOXP3, CTLA4, and SPP1. Results from this study support a model of LCH pathogenesis in which lesions do not arise from epidermal LCs but from accumulation of bone marrow-derived immature myeloid dendritic cells that recruit activated lymphocytes.


Assuntos
Células Epidérmicas , Epiderme/imunologia , Perfilação da Expressão Gênica , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Células de Langerhans/citologia , Células de Langerhans/imunologia , Adolescente , Antígenos CD/biossíntese , Antígenos CD/genética , Biomarcadores/metabolismo , Complexo CD3/biossíntese , Complexo CD3/genética , Criança , Pré-Escolar , Epiderme/patologia , Perfilação da Expressão Gênica/métodos , Histiocitose de Células de Langerhans/imunologia , Humanos , Lactente , Células de Langerhans/patologia , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Análise de Sequência com Séries de Oligonucleotídeos
17.
Oncogene ; 41(50): 5373-5384, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36348010

RESUMO

Osteosarcoma, the most common pediatric bone tumor, is an aggressive heterogeneous malignancy defined by complex chromosomal aberrations. Overall survival rates remain at ~70%, but patients with chemoresistant or metastatic disease have extremely poor outcomes of <30%. A subgroup of tumors harbor amplification of chromosome 8q24.2 and increased expression of the oncogenic long noncoding RNA (lncRNA) Plasmacytoma Variant Translocation-1 (PVT-1), which is associated with an extremely poor clinical prognosis. This study demonstrates that PVT-1 is critical for osteosarcoma tumor-initiation potential. Chromatin Hybridization by RNA Purification analysis identified Tripartite-Motif Containing Family 28 (TRIM28) as a novel PVT-1 binding partner. Mechanistically, co-immunoprecipitation studies showed the PVT-1/TRIM28 complex binds and increases SUMOylation of phosphatidylinositol 3-kinase catalytic subunit type 3 (Vps34), which leads to enhanced ubiquitination and degradation of tumor suppressor complex 2 (TSC2), thus contributing to increased self-renewal and stem cell phenotypes. Furthermore, we identified that osteosarcoma cells with increased PVT-1 have enhanced sensitivity to the SUMOylation inhibitor, TAK-981. Altogether, this study elucidated a role for PVT-1 in the enhancement of cancer stem-like behaviors, including migration and invasion, in osteosarcoma, and identified the novel PVT-1/TRIM28 axis signaling cascade as a potential therapeutic target for osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Osteossarcoma , RNA Longo não Codificante , Proteína 28 com Motivo Tripartido , Proteína 2 do Complexo Esclerose Tuberosa , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Proteína 28 com Motivo Tripartido/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
18.
Cancer Epidemiol Biomarkers Prev ; 31(2): 453-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782395

RESUMO

BACKGROUND: Survivors of childhood cancer are at risk for therapy-related subsequent malignant neoplasms (SMN), including thyroid SMN. Telomere length (TL) is associated with cancer risk, but the relationship between TL and SMN risk among survivors is less clear. METHODS: We conducted a nested, matched case-control study of radiation-exposed 15-year+ adult survivors of childhood cancer with thyroid SMN (cases) and without SMN (controls). Forty-six cases were matched to 46 controls by primary diagnosis, chemotherapy (yes/no), radiation field, and follow-up duration. Lymphocyte TL (LTL) was measured by telomere flow-FISH cytometry using blood samples banked at a mean of 38.9 years (cases), 39.2 years (controls). Genetic variation in telomere genes was assessed by whole genome sequencing. Point estimates for LTL <10th percentile were determined for cases and controls. RESULTS: Cases had shorter median LTL than controls in three out of four leukocyte subsets. Cases were more likely to have NK cell LTL <10th percentile (P = 0.01), and 2.8-fold more likely to have naïve T-cell LTL <10th percentile than controls (CI, 1.07-8.78). Five out of 15 cases with a rare indel or missense variant had naïve T-cell LTL <10th percentile, compared with one out of eight controls. CONCLUSIONS: Long-term survivors have shorter than expected LTL, a finding that is more pronounced among survivors with thyroid SMN. IMPACT: The long-term impact of childhood cancer treatment on immune function is poorly understood. Our findings support immune function studies in larger survivor cohorts to assess long-term deficits in adaptive and innate immunity that may underlie SMN risk.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Segunda Neoplasia Primária/genética , Encurtamento do Telômero/genética , Neoplasias da Glândula Tireoide/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/sangue , Radioterapia/efeitos adversos , Inquéritos e Questionários , Linfócitos T , Neoplasias da Glândula Tireoide/sangue
19.
Nat Commun ; 13(1): 6689, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335125

RESUMO

Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.


Assuntos
Ependimoma , Simportadores , Humanos , Criança , Ependimoma/genética , Ependimoma/patologia , Metilação de DNA/genética , Recidiva , Epigênese Genética , Simportadores/genética
20.
Adv Sci (Weinh) ; 8(23): e2101923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719887

RESUMO

Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Dissecação , Glioblastoma/cirurgia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA