Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276335

RESUMO

The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability.

2.
Sensors (Basel) ; 23(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177431

RESUMO

Artificial methods for noise filtering are required for the twenty-first century's Factory vision 4.0. From various perspectives of physics, noise filtering capabilities could be addressed in multiple ways. In this article, the physics of noise control is first dissected into active and passive control mechanisms and then further different physics are categorized to visualize their respective physics, mechanism, and target of their respective applications. Beyond traditional passive approaches, the comparatively modern concept for sound isolation and acoustic noise filtering is based on artificial metamaterials. These new materials demonstrate unique interaction with acoustic wave propagation exploiting different physics, which is emphasized in this article. A few multi-functional metamaterials were reported to harvest energy while filtering the ambient noise simultaneously. It was found to be extremely useful for next-generation noise applications where simultaneously, green energy could be generated from the energy which is otherwise lost. In this article, both these concepts are brought under one umbrella to evaluate the applicability of the respective methods. An attempt has been made to create groundbreaking transformative and collaborative possibilities. Controlling of acoustic sources and active damping mechanisms are reported under an active mechanism. Whereas Helmholtz resonator, sound absorbing, spring-mass damping, and vibration absorbing approaches together with metamaterial approaches are reported under a passive mechanism. The possible application of metamaterials with ventilation while performing noise filtering is reported to be implemented for future Smart Cities.

3.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161565

RESUMO

Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.

4.
Brain Sci ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061397

RESUMO

This study examined the impact of personalizing muscle vibration parameters on trunk control. We assessed how altered trunk extensor muscle (TEM) proprioception affects seated trunk control in healthy controls (HCs). To explore the link between altered TEM proprioception and impaired trunk control in chronic low back pain (cLBP), we performed equivalence testing between HCs undergoing TEM vibration and cLBP without vibration. Twenty HCs performed active joint reposition error (AJRE) testing to determine personalized vibration parameters. Each participant maintained balance on an unstable chair with eyes open and closed, with and without TEM vibration. We compared trunk control between HCs and twenty age- and sex-matched cLBP participants, using mean velocity and 95% confidence ellipse area of center-of-pressure changes to quantify trunk postural control. Equivalence was examined by comparing mean difference scores to minimal detectable change values and calculating between-group effect sizes. Personalized vibration parameters led to larger lumbopelvic repositioning errors (d = 0.89) than any single vibration frequency (d = 0.31-0.36). In healthy adults with no back pain, vision had large effects on postural control (ηp2 = 0.604-0.842), but TEM vibration had no significant effects (p > 0.105) or interactions with vision (p > 0.423). Between-group effect sizes (d = 0.32-0.51) exceeded our threshold for performance equivalence (d < 0.2). Muscle vibration altered position sense during AJRE testing, and personalizing parameters amplified this effect. However, TEM vibration had minimal impact on seated trunk postural control in adults with no back pain and did not lead to performance degradation comparable to that in cLBP.

5.
Membranes (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837734

RESUMO

In this work, we report the effect of steady-state atmospheric plasma (Corona discharge) in nanofibers and nanocomposite membranes for piezoelectric applications. The investigation was performed in PVDF (Poly vinylidene fluoride) nanofibers, CNT (Carbon Nanotubes)-reinforced PVDF nanocomposites, and PAN (Poly acrylonitrile) nanofiber membranes. Steady-state plasma was generated with a high voltage power source with 1 mA discharge current output and 6 kV discharge voltage, and the gap between tip and the material was maintained to be 1 cm. For the fabrication of nanofibers and nanocomposite membranes, an electrospinning method was used. The electrospinning parameters, such as flow rate and voltage, were optimally tuned for obtaining uniform nanofibers and nanomembranes. Along with the plasma treatment, heat treatment above the glass transition temperature was also conducted on the nanofiber membranes. Using a Scanning Electron Microscope (SEM), the morphology of the nanofibers was observed. X-ray Diffraction (XRD) demonstrated the polycrystallinity of the nanofibers. Fourier Transform Infrared Spectroscopy (FTIR) analysis of the PVDF nanofibers shows a peak at 796 cm-1 representing α-phase (C-H rocking) in the control sample which is absent in the treated samples. Raman spectroscopy of PVDF nanofibers identifies a Raman shift from 873 cm-1 to 877 cm-1 (denoting ß-phase) for plasma-treated samples only. Electron Paramagnetic Resonance (EPR) concludes that the intensity of the free radicals increases from 1.37 to 1.46 (a.u.) after plasma treatment. Then, sensors were fabricated from the PVDF nanofibers, MWCNT-reinforced PVDF nanofibers, and PAN nanofibers to characterize their piezoelectric properties. The impact test results showed that the atmospheric plasma and heat-treated samples had 86%, 277%, and 92% increases of the d33 value (piezoelectric coefficient) in the case of PVDF nanofibers, MWCNT-reinforced nanofibers, and PAN nanofibers, respectively. It was also observed that the capacitance of the nanofiber membranes has increased due to the plasma treatment.

6.
Sens Biosensing Res ; 37: 100510, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855937

RESUMO

It is always challenging to diagnose a disease using a biosensor reliably, and quickly with high sensitivity and selectivity, simultaneosuly. Recently the world experienced a global pandemic caused by a novel coronavirus (COVID-19). Although the vaccines are available, COVID-19 resulted a huge threat to the entire world with high mortality rates. Irrespective of a specific disease, there is a constant need for a cheaper and faster in-vitro, lab-on-a-chip sensor with high sensitivity and selectivity. Such sensors will not only facilitate the disease detection but will expedite and vaccine development process through detection of its corresponding antibodies when developed. In this article, we present an ultrasonic guided wave sensor using 128° YX lithium niobate piezoelectric wafer, specially designed in a shape of a multi-threaded comb with cantilever beams which is equally selective and sensitive for the detection of corresponding antigen-antibody assays. As a proof of concept in this article, the diagnostic sensor is created and tested for detection of SARS-COV-2 antibodies. Sensors were functionalized with SARS-COV-2 antigens and target antibody for the same was detected. Unique and judicially tuned acoustic features are analyzed for successful detection of the right antibodies. The proposed lab-on-a-chip device utilizes a wide range of diagnostic frequencies resulting into a highly sensitive platform for the diagnostics even to the slightest biophysical changes. The proposed sensor is also believed to extend to the detection of various other antigens/antibodies of different diseases in the future.

7.
Nano Converg ; 6(1): 3, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30652204

RESUMO

Integrating microfluidics with biosensors is of great research interest with the increasing trend of lab-on-the chip and point-of-care devices. Though there have been numerous studies performed relating microfluidics to the biosensing mechanisms, the study of the sensitivity variation due to microfluidic flow is very much limited. In this paper, the sensitivity of interdigitated electrodes was evaluated at the static drop condition and the microfluidic flow condition. In addition, this study demonstrates the use of gold nanoparticles to enhance the sensor signal response and provides experimental results of the capacitance difference during cancer antigen-125 (CA-125) antigen-antibody conjugation at multiple concentrations of CA-125 antigens. The experimental results also provide evidence of disease-specific detection of CA-125 antigen at multiple concentrations with the increase in capacitive signal response proportional to the concentration of the CA-125 antigens. The capacitive signal response of antigen-antibody conjugation on interdigitate electrodes has been enhanced by approximately 2.8 times (from 260.80 to 736.33 pF at 20 kHz frequency) in static drop condition and approximately 2.5 times (from 205.85 to 518.48 pF at 20 kHz frequency) in microfluidic flow condition with gold nanoparticle-coating. The capacitive signal response is observed to decrease at microfluidic flow condition at both plain interdigitated electrodes (from 260.80 to 205.85 pF at 20 kHz frequency) and gold nano particle coated interdigitated electrodes (from 736.33 to 518.48 pF at 20 kHz frequency), due to the strong shear effect compared to static drop condition. However, the microfluidic channel in the biosensor has the potential to increase the signal to noise ratio due to plasma separation from the whole blood and lead to the increase concentration of the biomarkers in the blood volume for sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA