Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Mol Pharm ; 21(4): 1563-1590, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466810

RESUMO

Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Descoberta de Drogas/métodos , Desenho de Fármacos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
2.
Biomacromolecules ; 25(8): 5181-5197, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-38943659

RESUMO

Rapid proliferation and a faster rate of glycolysis in cancer cells often result in an elevated local temperature (40-43 °C) at the tumor site. Nanoparticles prepared from polymers with two lower critical solution temperatures (LCSTs) can be utilized to take advantage of this subtle temperature elevation to deliver anticancer drugs preferably to the cancer cells, thereby enhancing the overall therapeutic efficacy and reducing side effects. In this direction, we synthesized N-vinyl-2-pyrrolidone (NVP) and substituted NVP (sub-NVP: C2-NVP, C4-NVP)-based polymers with precisely controlled LCSTs by varying the ratio of NVP and sub-NVP. The first LCST (LCST1) was kept below 37 °C to promote self-assembly, drug loading, and structural stability in physiological conditions and the second LCST (LCST2) was in the range of 40-43 °C to ensure mild hyperthermia-induced drug release. Additionally, covalent attachment of tetraphenylethylene (TPE, AIEgen) resulted in aggregation-induced emission in thermoresponsive micellar nanoparticles in which TPE acted as a Förster Resonance Energy Transfer (FRET) pair with the loaded anticancer drug doxorubicin (DOX). Tracking of FRET-induced fluorescence recovery of TPE molecules was utilized to confirm the real-time thermoresponsive release of DOX from nanoparticles and eventual localization of TPE in the cytoplasm and DOX in the nucleus. In vitro cellular studies such as cytotoxicity, cellular uptake, and thermoresponsive drug release showed that the DOX-loaded polymeric nanoparticles were nontoxic to normal cells (HEK-293) but significantly more effective in cancer cells (MCF-7) at 40 °C. To our knowledge, this is the first report of preferential delivery of anticancer drugs only by exploiting the slightly elevated temperature of cancer cells.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Nanopartículas , Polímeros , Humanos , Nanopartículas/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Polímeros/química , Pirrolidinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Micelas , Temperatura , Sistemas de Liberação de Medicamentos/métodos , Células MCF-7 , Portadores de Fármacos/química , Transferência Ressonante de Energia de Fluorescência , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estilbenos
3.
J Org Chem ; 89(6): 3747-3768, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394362

RESUMO

In this study, we designed the 4'-C-acetamidomethyl-2'-O-methoxyethyl (4'-C-ACM-2'-O-MOE) uridine and thymidine modifications, aiming to test them into small interfering RNAs. Thermal melting studies revealed that incorporating a single 4'-C-ACM-2'-O-MOE modification in the DNA duplex reduced thermal stability. In contrast, an increase in thermal stability was observed when the modification was introduced in DNA:RNA hybrid and in siRNAs. Thermal destabilization in DNA duplex was attributed to unfavorable entropy, which was mainly compensated by the enthalpy factor to some extent. A single 4'-C-ACM-2'-O-MOE thymidine modification at the penultimate position of the 3'-end of dT20 oligonucleotides in the presence of 3'-specific exonucleases, snake venom phosphodiesterase (SVPD), demonstrated significant stability as compared to monomer modifications including 2'-O-Me, 2'-O-MOE, and 2'-F. In gene silencing studies, we found that the 4'-C-ACM-2'-O-MOE uridine or thymidine modifications at the 3'-overhang in the passenger strand in combination with two 2'-F modifications exhibited superior RNAi activity. The results suggest that the dual modification is well tolerated at the 3'-end of the passenger strand, which reflects better siRNA stability and silencing activity. Interestingly, 4'-C-ACM-2'-O-MOE-modified siRNAs showed considerable gene silencing even after 96 h posttransfection; it showed that our modification could induce prolonged gene silencing due to improved metabolic stability. Molecular modeling studies revealed that the introduction of the 4'-C-ACM-2'-O-MOE modification at the 3'-end of the siRNA guide strand helps to anchor the strand within the PAZ domain of the hAgo2 protein. The overall results indicate that the 4'-C-ACM-2'-O-MOE uridine and thymidine modifications are promising modifications to improve the stability, potency, and hAgo2 binding of siRNAs.


Assuntos
Ácidos Nucleicos , RNA Interferente Pequeno/química , DNA , Timidina , Uridina/química
4.
J Chem Inf Model ; 64(14): 5580-5589, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38982947

RESUMO

Targeted treatments for breast cancer that minimize harm to healthy cells are highly sought after. Our study explores the potentiality of riboflavin as a targeted anticancer compound that can be activated by light irradiation. Here, we integrated time-dependent density functional theory (TD-DFT) calculations and an in vitro study under visible light. The TD-DFT calculations revealed that the electronic charge transferred from the DNA base to riboflavin, with the most significant excitation peak occurring within the visible light range. Guided by these insights, an in vitro study was conducted on the breast cancer cell lines MCF-7 and MDA-MB-231. The results revealed substantial growth inhibition in these cell lines when exposed to riboflavin under visible light, with no such impact observed in the absence of light exposure. Interestingly, riboflavin exhibited no/minimal growth-inhibitory effects on the normal cell line L929, irrespective of light conditions. Moreover, through EtBr displacement (DNA-EtBr) and the TUNEL assay, it has been illustrated that, upon exposure to visible light, riboflavin can intercalate within DNA and induce DNA damage. In conclusion, under visible light conditions, riboflavin emerges as a promising candidate with a selective and effective potent anticancer agent against breast cancer while exerting a minimal influence on regular cellular activity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Dano ao DNA , Teoria da Densidade Funcional , Luz , Riboflavina , Riboflavina/farmacologia , Riboflavina/química , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Proliferação de Células/efeitos dos fármacos , DNA , Modelos Moleculares
5.
Exp Cell Res ; 424(1): 113488, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736226

RESUMO

Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.


Assuntos
Antineoplásicos , Glioma , Insulinas , Lignanas , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Insulinas/farmacologia , Insulinas/uso terapêutico , Linhagem Celular Tumoral , Apoptose
6.
Biopolymers ; 114(9): e23556, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341448

RESUMO

In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.


Assuntos
Neoplasias Bucais , Polímeros , Humanos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Mucosa Bucal , Neoplasias Bucais/tratamento farmacológico
7.
Macromol Rapid Commun ; 44(2): e2200594, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36302094

RESUMO

Development of fluorescent imaging probes is an important topic of research for the early diagnosis of cancer. Based on the difference between the cellular environment of tumor cells and normal cells, several "smart" fluorescent probes have been developed. In this work, a glycopolymer functionalized Förster resonance energy transfer (FRET) based fluorescent sensor is developed, which can monitor the pH change in cellular system. One-pot sequential reversible addition-fragmentation chain transfer (RAFT)polymerization technique is employed to synthesize fluorescent active triblock glycopolymer that can undergo FRET change on the variation of pH. A FRET pair, fluorescein o-acrylate (FA) and 7-amino-4-methylcoumarin (AMC) is linked via a pH-responsive polymer poly [2-(diisopropylamino)ethyl methacrylate] (PDPAEMA), which can undergo reversible swelling/deswelling under acidic/neutral condition. The presence of glycopolymer segment provides stability, water solubility, and specificity toward cancer cells. The cellular FRET experiments on cancer cells (MDA MB 231) and normal cells (3T3 fibroblast cells) demonstrate that the material is capable of distinguishing cells as a function of pH change.


Assuntos
Neoplasias , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Polimerização , Concentração de Íons de Hidrogênio
8.
Exp Cell Res ; 417(1): 113195, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561786

RESUMO

The Transforming growth factor-ß1 (TGF- ß1) in the tumor microenvironment (TME) is the major cytokine that acts as a mediator of tumor-stroma crosstalk, which in fact has a dual role in either promoting or suppressing tumor development. The cancer-associated fibroblasts (CAFs) are the major cell types in the TME, and the interaction with most of the epithelial cancers is the prime reason for cancer survival. However, the molecular mechanisms, associated with the TGF- ß1 induced tumor promotion through tumor-CAF crosstalk are not well understood. In the Reverse Warburg effect, CAFs feed the adjacent cancer cells by lactate produced during the aerobic glycolysis. We hypothesized that the monocarboxylate transporter, MCT4 which is implicated in lactate efflux from the CAFs, must be overexpressed in the CAFs. Contextually, to explore the role of TGF- ß1 in the hypoxia-induced autophagy in CAFs, we treated CoCl2 and external TGF- ß1 to the human dermal fibroblasts and L929 murine fibroblasts. We demonstrated that hypoxia accelerated the TGF- ß1 signaling and subsequent transformation of normal fibroblasts to CAFs. Moreover, we elucidated that synergistic induction of autophagy by hypoxia and TGF- ß1 upregulate the aerobic glycolysis and MCT4 expression in CAFs. Furthermore, we showed a positive correlation between glucose consumption and MCT4 expression in the CAFs. Autophagy was also found to be involved in the EMT in hypoxic CAFs. Collectively, these findings reveal the unappreciated role of autophagy in TME, which enhances the CAF transformation and that promotes tumor migration and metastasis via the reverse Warburg effect.


Assuntos
Autofagia , Fibroblastos Associados a Câncer , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Neoplasias , Fator de Crescimento Transformador beta1/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Hipóxia/metabolismo , Ácido Láctico/metabolismo , Camundongos , Neoplasias/patologia , Microambiente Tumoral , Regulação para Cima
9.
Environ Res ; 217: 114922, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435492

RESUMO

Carbon dots (CDs) are an exquisite class of carbon allotrope that is already well nourished for their good biocompatibility, water-solubility, excellent photostability, and magnificent photoluminescence property. Doping strategy with heteroatoms is an efficacious way to modify the physicochemical and optical properties, making the carbon dots an exceedingly potential candidate. This work reports the fabrication and cancer cell imaging application of photoluminescent heteroatom-doped carbon dots by use of cysteine and urea as carbon, nitrogen, and sulphur sources through a straightforward and highly productive hydrothermal procedure. The fabricated luminescent carbon dots are spherical in shape, with an average diameter of 3.5 nm. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) characterization revealed key facts about the surface functional groups and chemical compositions of carbon dots. The excitation-dependent photoluminescence (PL) peak appeared at around 445 nm against the excited wavelength of 350 nm. Moreover, under the provided experimental conditions, all the carbon dots are non-toxic and safe. The cytotoxicity and the safety profiles of the carbon dots were found to be in the bearable range under normal in-vitro experimental circumstances. Cellular uptake was observed by the green fluorescence of carbon dots inside cells. Likewise, the carbon dots did not alter the cell viability of the normal glial cell line. Again, when treated with the carbon dots, there was no notable increase of apoptotic cells in the G2/M phase of cell cycle analysis that confirmed the imaging-trackable ability of the carbon dots.


Assuntos
Carbono , Neoplasias , Carbono/química , Nitrogênio , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Enxofre
10.
Proc Natl Acad Sci U S A ; 117(22): 12324-12331, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32409605

RESUMO

Glioblastoma multiforme (GBM) is an aggressive cancer without currently effective therapies. Radiation and temozolomide (radio/TMZ) resistance are major contributors to cancer recurrence and failed GBM therapy. Heat shock proteins (HSPs), through regulation of extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT), provide mechanistic pathways contributing to the development of GBM and radio/TMZ-resistant GBM. The Friend leukemia integration 1 (Fli-1) signaling network has been implicated in oncogenesis in GBM, making it an appealing target for advancing novel therapeutics. Fli-1 is linked to oncogenic transformation with up-regulation in radio/TMZ-resistant GBM, transcriptionally regulating HSPB1. This link led us to search for targeted molecules that inhibit Fli-1. Expression screening for Fli-1 inhibitors identified lumefantrine, an antimalarial drug, as a probable Fli-1 inhibitor. Docking and isothermal calorimetry titration confirmed interaction between lumefantrine and Fli-1. Lumefantrine promoted growth suppression and apoptosis in vitro in parental and radio/TMZ-resistant GBM and inhibited tumor growth without toxicity in vivo in U87MG GBM and radio/TMZ-resistant GBM orthotopic tumor models. These data reveal that lumefantrine, an FDA-approved drug, represents a potential GBM therapeutic that functions through inhibition of the Fli-1/HSPB1/EMT/ECM remodeling protein networks.


Assuntos
Antimaláricos/administração & dosagem , Antineoplásicos Alquilantes/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Lumefantrina/administração & dosagem , Temozolomida/administração & dosagem , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transativadores/genética , Transativadores/metabolismo
11.
Chemistry ; 28(9): e202103830, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34936721

RESUMO

Selective detection of H2 S in the cellular systems using fluorescent CPs/MOFs is of great scientific interest due to their outstanding aqueous stability, biocompatibility and real-time detection ability. Fabrication of such materials using complete biologically essential elements and applying them as an efficient biosensor is still quite challenging. In this context, two newly synthesized CPs containing biologically essential metal ion (Zn) and nitro/azido functional groups into the framework to sense extracellular and intracellular H2 S by reducing into respective amines are presented. The CP-1 containing the azide group acted as an efficient fluorescent turn-on probe with the lowest detection limit (7.2 µM) and shortest response time (30 s) among the Zn-based probes reported till date. Moreover, CP-1 exhibited green luminescence in live cells after imaging a very low concentration of H2 S, whereas the nitro analogue CP-2 could not detect the target analyte due to its framework disruption.


Assuntos
Corantes Fluorescentes , Polímeros , Azidas , Luminescência , Zinco
12.
Exp Cell Res ; 406(2): 112760, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339674

RESUMO

The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFßR/VEGFR, change in adhesion molecules α5ß3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Terapia de Alvo Molecular , Animais , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos
13.
Semin Cancer Biol ; 66: 59-74, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430557

RESUMO

Autophagy is an evolutionary conserved catabolic process that regulates the cellular homeostasis by targeting damaged cellular contents and organelles for lysosomal degradation and sustains genomic integrity, cellular metabolism, and cell survival during diverse stress and adverse conditions. Recently, the role of autophagy is extremely debated in the regulation of cancer initiation and progression. Although autophagy has a dichotomous role in the regulation of cancer, growing numbers of studies largely indicate the pro-survival role of autophagy in cancer progression and metastasis. In this review, we discuss the detailed mechanisms of autophagy, the role of pro-survival autophagy that positively drives several classical as well as emerging hallmarks of cancer for tumorigenic progression, and also we address various autophagy inhibitors that could be harnessed against pro-survival autophagy for effective cancer therapeutics. Finally, we highlight some outstanding problems that need to be deciphered extensively in the future to unravel the role of autophagy in tumor progression.


Assuntos
Autofagia/fisiologia , Neoplasias/patologia , Animais , Carcinogênese/patologia , Sobrevivência Celular/fisiologia , Progressão da Doença , Humanos
14.
J Cell Physiol ; 236(11): 7887-7902, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008184

RESUMO

Autophagy is primarily a homeostatic and catabolic process that is increasingly being recognized to have a pivotal role in the initiation and maintenance of cancer cells, as well as in the emergence of therapeutic resistance. Moreover, in the tumor microenvironment (TME) autophagy plays a crucial and sometimes dichotomous role in tumor progression. Recent studies show that during the early stages of tumor initiation, autophagy suppresses tumorigenesis. However, in the advanced stage of tumorigenesis, autophagy promotes cancer progression by protecting cancer cells against stressful conditions and therapeutic assault. Specifically, in cancer-associated fibroblasts (CAFs), autophagy promotes tumorigenesis not only by providing nutrients to the cancerous cells but also by inducing epithelial to mesenchymal transition, angiogenesis, stemness, and metastatic dissemination of the cancer cells, whereas in the immune cells, autophagy induces the tumor-localized immune response. In the TME, CAFs play a crucial role in cancer cell metabolism, immunoreaction, and growth. Therefore, targeting autophagy in CAFs by several pharmacological inducers like rapamycin or the inhibitor such as chloroquine has gained importance in preclinical and clinical trials. In the present review, we summarized the basic mechanism of autophagy in CAFs along with its role in driving tumorigenic progression through several emerging as well as classical hallmarks of cancer. We also addressed various autophagy inducers as well as inhibitors of autophagy for more efficient cancer management. Eventually, we prioritized some of the outstanding issues that must be addressed with utmost priority in the future to elucidate the role of autophagy in CAFs on tumor progression and therapeutic intervention.


Assuntos
Autofagia , Fibroblastos Associados a Câncer/patologia , Neoplasias/patologia , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
15.
Cancer Metastasis Rev ; 37(4): 749-766, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29536228

RESUMO

Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.


Assuntos
Neoplasias/patologia , Neoplasias/terapia , Autofagia/fisiologia , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
16.
Mol Pharm ; 16(1): 24-40, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30513203

RESUMO

The effective delivery of target-specific siRNA to the brain by exploiting the exosomes derived from dendritic cells renders the paradigm shift for the prospective use of nanosized exosomes as a delivery system. Although the in vivo targeting strategies by other nanovesicles like liposomes exist, still this novel exosome-based delivery approach holds an inclusive dominance of in vivo security and reduced immunogenicity. Achieving promising exosome-based delivery strategies warrants more desirable exploration of their biology. Over the years, the invention of novel production, characterization, targeting strategies, and cargo loading techniques of exosome improved its ability to reach clinics. Essentially, exosome-based delivery of therapeutics assures to conquer the major hurdles, like delivery of cargos across impermeable biological barriers, like the blood-brain barrier, biocompatibility, increased solubility, metabolic stability, improved circulation time, target specific delivery, and pharmacokinetics, and thereby enhanced the efficacy of loaded therapeutic agents. In this article, we cover the current status of exosome as a delivery vehicle for therapeutics and the challenges that need to be overcome, and we also discuss future perspectives of this exciting field of research to transform it from bench to clinical reality.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Humanos , Modelos Teóricos , RNA Interferente Pequeno/metabolismo
17.
Pharmacol Res ; 148: 104416, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31470079

RESUMO

Aloe vera (Aloe barbadensis Miller) is a perennial succulent medicinal plant. It has been used as a traditional or folk medicine for thousands of years and claimed that it possesses wound and burn healing activities, and anti-inflammatory as well as immunomodulatory effects. In recent years, the use of Aloe vera has been growing as a dietary supplement. The pre-clinical studies over the last couple of decades uncover the potential therapeutic activities of Aloe vera and its bioactive compounds, especially against neoplastic disease. Such investigations indicate the possible preventive as well as therapeutic effects of Aloe vera against cancer. Here, we discuss the crucial bioactive compounds of Aloe vera that have been harnessed against cancer and also address several mechanisms of action of these lead bioactive compounds compared to other standard drugs involved in cancer prevention and treatment.


Assuntos
Aloe/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Queimaduras/tratamento farmacológico , Humanos , Plantas Medicinais/química , Cicatrização/efeitos dos fármacos
18.
Org Biomol Chem ; 17(39): 8800-8805, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31560347

RESUMO

Hydrogen persulfide (H2S2) plays an important role in sulfur-based redox signaling mechanisms. Herein, we developed a visible light activated ESIPT based H2S2 donor using a p-hydroxyphenacyl phototrigger. The unique feature of the designed H2S2 donor system is the ability to monitor the H2S2 release in real time through a non-invasive fluorescence color change approach, with the color changing from green to blue. Next, we demonstrated the detection and quantification of H2S2 using a fluorescein based "turn-on" fluorescent probe. Furthermore, in vitro studies of the designed H2S2 donor demonstrated the real-time monitored H2S2 release and cytoprotective ability in the highly oxidizing cellular environment of MDA-MB-468 cells.


Assuntos
Corantes Fluorescentes/química , Hidrogênio/análise , Imagem Óptica , Sulfetos/análise , Linhagem Celular Tumoral , Humanos , Luz , Processos Fotoquímicos , Fatores de Tempo
19.
Phytother Res ; 33(10): 2571-2584, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359523

RESUMO

Glioma is one of the most perplexing cancers because of its infiltrating nature, molecular signaling, and location in central nervous system. Blood-brain barrier acts as a natural barrier to the glioma making it difficult to access by conventional chemotherapy. Clinicians are using natural compounds or their derivatives for several diseases including different cancers. However, the feasibility of using natural compounds in glioma is not explored in details. Natural compounds can act over a wide variety of signaling pathways such as survival and metabolic pathways and induce cell death. Some of the natural agents have additional benefits of crossing biological barriers such as blood-brain barrier with ease having few or no impact on the surrounding healthy cells. All of these benefits make natural compounds a prospective candidate for the glioma management. This article evaluates the benefits of using natural compounds for glioma therapy and their possible mechanism of actions. We have discussed the natural compounds assessed currently for glioma therapy and proposed a few novel natural compounds with potential antiglioma effect based on their mechanism of action.


Assuntos
Produtos Biológicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Animais , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Barreira Hematoencefálica , Humanos
20.
Br J Cancer ; 118(11): 1442-1452, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695771

RESUMO

BACKGROUND: Monoamine oxidases (MAO) are mitochondrial enzymes functioning in oxidative metabolism of monoamines. The action of MAO-A has been typically described in neuro-pharmacological domains. Here, we have established a co-relation between IL-6/IL-6R and MAO-A and their regulation in hypoxia induced invasion/angiogenesis. METHODS: We employed various in-vitro and in-vivo techniques and clinical samples. RESULTS: We studied a co-relation among MAO-A and IL-6/IL-6R and tumour angiogenesis/invasion in hypoxic environment in breast cancer model. Activation of IL-6/IL-6R and its downstream was found in hypoxic cancer cells. This elevation of IL-6/IL-6R caused sustained inhibition of MAO-A in hypoxic environment. Inhibition of IL-6R signalling or IL-6R siRNA increased MAO-A activity and inhibited tumour angiogenesis and invasion significantly in different models. Further, elevation of MAO-A with 5-azacytidine (5-Aza) modulated IL-6 mediated angiogenesis and invasive signatures including VEGF, MMPs and EMT in hypoxic breast cancer. High grade invasive ductal carcinoma (IDC) clinical specimen displayed elevated level of IL-6R and depleted MAO-A expression. Expression of VEGF and HIF-1α was unregulated and loss of E-Cadherin was observed in high grade IDC tissue specimen. CONCLUSIONS: Suppression of MAO-A by IL-6/IL-6R activation promotes tumour angiogenesis and invasion in hypoxic breast cancer environment.


Assuntos
Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/metabolismo , Monoaminoxidase/metabolismo , Receptores de Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos CD/metabolismo , Azacitidina/farmacologia , Neoplasias da Mama/irrigação sanguínea , Caderinas/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Embrião de Galinha , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Biológicos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA