RESUMO
The newly discovered noncentrosymmetric superconductor ThCoC_{2} exhibits numerous types of unconventional behavior in the field dependent heat capacity data. Here we present the first measurement of the gap symmetry of ThCoC_{2} by muon spin rotation and relaxation (µSR) measurements. The temperature dependence of the magnetic penetration depth measured using the transverse field µSR experiment reveals the evidence of a nodal pairing symmetry. To understand this finding, we carry out calculations of the superconducting pairing eigenvalue and eigenfunction (pairing symmetry) due to the spin-fluctuation mechanism by directly implementing the ab initio band structures. We find that the system possesses a single Fermi surface with considerable three dimensionality and a strong nesting along the k_{z} direction. Such nesting promotes a superconducting state with a cosk_{z}-like pairing symmetry with a prominent nodal line on the k_{z}=±π/2 plane. The result agrees well with the experimental data.
RESUMO
In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.
RESUMO
TheR3TiSb5ternary compounds, withRa light rare earth (La to Sm) have been reported to crystallize with the anti-Hf5CuSn3-type hexagonal structure (Pearson's symbolhP18; space-groupP63/mcm, N. 193). An early article that reported possible superconductivity in some of these intermetallic phases (namely those withR= La, Ce, and Nd) caught our attention. In this work, we have now refined the crystal structure of theR3TiSb5compounds withR= Ce, Pr and Nd by Rietveld methods using high-resolution neutron powder diffraction data. The magnetic ground states of these intermetallics have been investigated by low-temperature magnetization and high-intensity neutron diffraction. We find two different magnetic transitions corresponding to two related magnetic structures atTN1= 4.8 K (k1= [0, 1/2, 1/8]) andTN2= 3.4 K (k2= [0, 0, 1/8]), respectively for Ce3TiSb5. However, the magnetic ordering appears to occur following a peculiar hysteresis: thek2-type magnetic structure develops only after thek1-type phase fraction has first slowly ordered with time and the size of the ordered Ce3+magnetic moment has become large enough to induce the second magnetic transition. AtT= 1.5 K the maximum amplitude of the Ce moment in the coexisting phases amounts toµCe= 2.15 µB. For Nd3TiSb5an antiferromagnetic ordering belowTN= 5.2 K into a relatively simpler commensurate magnetic structure with a magnetic moment ofµNd= 2.14(3)µBand magnetic propagation vector ofk= [0, 0, 0], was determined. No evidence of superconductivity has been found in Nd3TiSb5. Finally, Pr3TiSb5does not show any ordering down to 1.5 K in neutron diffraction while an antiferromagnetic ground state is detected in magnetization measurements. There is no sign of magnetic contribution from Ti atoms found in any of the studied compounds.
RESUMO
The electronic ground state of iron-based materials is unusually sensitive to electronic correlations. Among others, its delicate balance is profoundly affected by the insertion of magnetic impurities in the FeAs layers. Here, we address the effects of Fe-to-Mn substitution in the non-superconducting Sm-1111 pnictide parent compound via a comparative study of SmFe[Formula: see text]Mn[Formula: see text]AsO samples with [Formula: see text] 0.05 and 0.10. Magnetization, Hall effect, and muon-spin spectroscopy data provide a coherent picture, indicating a weakening of the commensurate Fe spin-density-wave (SDW) order, as shown by the lowering of the SDW transition temperature [Formula: see text] with increasing Mn content, and the unexpected appearance of another magnetic order, occurring at [Formula: see text] and 20 K for [Formula: see text] and 0.10, respectively. We attribute the new magnetic transition at [Formula: see text], occurring well inside the SDW phase, to a reorganization of the Fermi surface due to Fe-to-Mn substitutions. These give rise to enhanced magnetic fluctuations along the incommensurate wavevector [Formula: see text], further increased by the RKKY interactions among Mn impurities.
RESUMO
The local structure of La(Fe1-x Mn x )AsO has been investigated using temperature dependent Fe K-edge extended x-ray absorption fine structure (EXAFS) measurements. The EXAFS data reveal distinct behavior of Fe-As and Fe-Fe atomic displacements with a clear boundary between x ⩽ 0.02 and x > 0.02. The Fe-As bondlength shows a gradual thermal expansion while the Fe-Fe bond manifests a temperature dependent anomaly at â¼180 K for x > 0.02. It is interesting to find characteristically different nature of Fe-As and Fe-Fe bondlengths shown by the temperature dependent mean square relative displacements. Indeed, the Fe-As bond, stiffer than that of the Fe-Fe, gets softer for x ⩽ 0.02 and hardly shows any change for x > 0.02. On the other hand, Fe-Fe bond tends to be stiffer for x ⩽ 0.02 followed by a substantial softening for x > 0.02. Such a distinction has been seen also in the As K-edge x-ray absorption near edge structure, probing local geometry around As atom together with the valence electronic structure. The results suggest that local atomic displacements by Mn substitution inducing increased iron local magnetic moment that should be the main reason for its dramatic effect in iron-based superconductors.
RESUMO
The structural and magnetic properties of Yb(2)Al(1-x)Mg(x)Si(2) (x = 0, 0.5 and 1), crystallizing in the tetragonal Mo(2)FeB(2)-type structure, are reported in this work. Yb(2)AlSi(2) exhibits a Pauli paramagnetic ground state arising due to spin/valence fluctuations induced by a significant Yb 4f conduction band hybridization. High-field magnetization (up to 120 kOe) indicates a nearly temperature-independent susceptibility of 8.6 × 10(-3) emu/Yb mol below 10 K. On the other hand, Yb ions in Yb(2)MgSi(2) order antiferromagnetically at a relatively high temperature T(N) of 9.5 K. The intermediate composition alloy Yb(2)Al(0.5)Mg(0.5)Si(2) is a Kondo lattice, antiferromagnet with T(N) = 5.5 K. The coefficient of the linear term of the electronic heat capacity, γ, of Yb(2)AlSi(2) is found to be 305 mJ mol(-1) K(-2), indicating a significant electronic mass enhancement due to strong electronic correlations. Below 12 K, an additional contribution to the heat capacity of the form T(3)lnT is observed. The (170)Yb Mössbauer spectra in the ordered state of Yb(2)MgSi(2) indicate a strong coupling of the 4f quadrupolar moment with the magnetic moment through a magneto-elastic coupling.
RESUMO
We report magnetization, heat capacity and electrical resistivity measurements on CePtZn, which crystallizes in the orthorhombic TiNiSi type structure. Magnetization and electrical resistivity on the iso-structural series of compounds Ce(1-x)La(x)PtZn (x = 0.1, 0.2 0.5 and 1) were also carried out. The electrical resistivity of CePtZn was also measured in external magnetic fields up to 12 T and under pressures up to 2.66 GPa. We find that CePtZn is a dense Kondo lattice, ordering antiferromagnetically at T(N) = 1.7 K, with a comparable Kondo temperature. The magnetic transition temperature, T(N), is continuously suppressed both by the magnetic field and pressure and [Formula: see text] around 5-6 T and at 1.2 GPa, respectively. Non-Fermi liquid behavior of resistivity at 4 T and 1.2 GPa and logarithmic divergence of the heat capacity, C(4f)/T, at 6 T in a limited temperature region strongly suggest the emergence of a quantum critical point as [Formula: see text].
RESUMO
The substitution of Mn for Fe on the sub-lattice in LaFeAsO has a remarkable impact on both structural and magnetic properties; for example, the structural and magnetic transition temperatures decrease of ~20 K in samples with a Mn-content as low as x = 0.01. Such a dramatic effect results from the high stability of the substituting Mn2+ ion (3d 5) in its high-spin state, which opposes any variation to its electronic state (configuration), perturbing thereby interactions within the Fe sub-lattice between the Fe ions surrounding the substituent. Several investigations ascertained that the structural transformation in LnFeAsO compounds (Ln: lanthanide) cannot be ascribed to lattice degrees of freedom, but rather to electronic or spin ones. In this context, even an extremely low concentration of Mn2+ ions diluted in the Fe sub-lattice produces a reduction of the electronic degree of freedom of the system, thus hindering the structural transformation and the magnetic transition.
RESUMO
A systematic study of the physical properties and microscopic magnetism of Nd7Pd3 compound, which in the paramagnetic state crystallizes in the non-centrosymmetric hexagonal Th7Fe3-type structure (hP20-P63 mc; with a = 10.1367(1) Å and c = 6.3847(1) Å at 300 K), confirms multiple magnetic ordering transitions that occur upon cooling. Antiferromagnetic transition is observed at T N = 37 K, which is followed by ferromagnetic transformation at T C = 33 K. The first-order magnetic transition at T C is magnetoelastic: it involves a change of crystal symmetry from P63 mc to Cmc21 and leads to anisotropic changes of the unit cell parameters. While the antiferromagnetic structure is symmetry allowed in P63 mc, the ferromagnetic structure with magnetic moments along the a-direction of the original hexagonal unit cell induces the first order transition to Cmc21. Density functional theory calculations confirm the experimentally observed ground state with the a-axis as the easy magnetization direction.
RESUMO
An investigation on the ground state magnetism of CeScSi, CeScGe (tetragonal CeScSi-type, tI12, space group I4/mmm) by temperature-dependent powder neutron diffraction has been carried out, as debated and controversial data regarding the low temperature magnetic behaviours of these two compounds were reported. Our studies reveal that, while cooling, long-range magnetic ordering in CeScSi and CeScGe takes place by a two-step process. A first transition leads to a magnetic structure with the Ce moments aligned ferromagnetically onto two neighbouring tetragonal basal a-b planes of the CeScSi-type structure; the double layers are then antiferromagnetically coupled to each other along the c-axis. The transition temperature associated with the first ordering is T N ~ 26 K and T N ~ 48 K for the silicide and the germanide, respectively. Here the spin directions are rigorously confined to the basal plane, with values of the Ce magnetic moments of µ Ce = 0.8-1.0 µ B. A second magnetic transition, which takes place at slightly lower temperatures, results in a canting of the ordered magnetic moments out of the basal plane which is accompanied by an increase of the magnetic moment value of Ce to µ Ce = 1.4-1.5 µ B. Interestingly, the second magnetic transition leads to a structural distortion in both compounds from the higher-symmetry tetragonal space group I4/mmm to the lower-symmetry and triclinic I-1 (non-standard triclinic). Magnetic symmetry analysis shows that the canted structure would not be allowed in the I4/mmm space group; this result further confirms the structural transition. The transition temperatures T S from I4/mmm to I-1 are about 22 K in CeScSi and 36 K in CeScGe, i.e. well below the temperature of the first onset of antiferromagnetic order observed in this work (or below the ordering temperature, previously reported as either T C or T N). This result, along with the synchronism of the magnetic and structural transitions, suggests a magnetostructural origin of this structural distortion. We have also carried out powder neutron diffraction for LaScSi as a non-magnetically-ordering reference compound and compared the results with those of CeScSi and CeScGe compounds.
RESUMO
Motivated by the report of superconductivity in R3TiSb5 (R = La and Ce) and possibly Nd3TiSb5 at â¼4 K, we grew single crystals of La3TiSb5 and Ce3TiSb5 by the high-temperature solution method using Sn as a flux. While in both compounds we observed a superconducting transition at 3.7 K for resistivity and low-field magnetization, our data conclusively show that it arose from residual Sn flux present in the single crystals. In particular, the heat capacity data do not present any of the anomalies expected from a bulk superconducting transition. The anisotropic magnetic properties of Ce3TiSb5, crystallizing in a hexagonal P63/mcm structure, were studied in detail. We find that the Ce ions in Ce3TiSb5 form a Kondo lattice and exhibited antiferromagnetic ordering at 5.5 K with a reduced moment and a moderately normalized Sommerfeld coefficient of 598 mJ/mol K2. The characteristic single-ion Kondo energy scale was found to be â¼8 K. The magnetization data were subjected to a crystal electric field (CEF) analysis. The experimentally observed Schottky peak in the 4f-electron heat capacity of Ce3TiSb5 was reproduced fairly well by the energy levels derived from the CEF analysis.
RESUMO
We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the [Formula: see text] phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.
RESUMO
The magnetic properties and magnetic structures of the R 5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings. A transition at T C = 125 K in Tb5Ni2In4 [κ 1 = (0, 0, 0)] leads to a ferro/ferrimagnetic order where the magnetic ordering in one of the three R-sublattices leads to the ordering of another one; the third sublattice stays non-magnetic. New magnetic Bragg peaks appearing below T N = 20 K can be indexed with the incommensurate magnetic propagation vector κ 2 = (0, 0.636, ½); at T N = 20 K a cycloidal spin order, which acts mostly upon the third R-sublattice, occurs. Ho5Ni2In4 establishes first antiferromagnetism [κ = (0, 0, 0)] at T N = 31 K on two R-sublattices; then the system becomes ferro/ferrimagnetic at T C = 25 K with the third sublattice ordering as well. Tb11Ni4In9 has three magnetic transitions at T C = 135 K, T N1 = 35 K and at T N2 = 20 K; they are respectively coupled to the appearance of different propagation vectors [κ 1 = (0, 0, 0), κ 2 = (0, 0, ½), κ 3 = (0, 1, ½)], which themselves are operating differently on the five different R-sublattices. Two sublattices remain mostly ferromagnetic down to lowest temperature while the three others are predominantly coupled antiferromagnetically. In Ho11Ni4In9 a purely antiferromagnetic order, described by four different magnetic propagation vectors [κ 1 = (0, 0.62, 0), κ 2 = (0, 1, 0), κ 3 = (0, 0, ½), κ 4 = (0, 1, ½)], succeedingly includes all five different sublattices on cooling through transitions at T N1 = 22 K, T N2 = 12 K, T N3 = 8 K and T N4 = 7 K. The strength of the magnetic interactions of the different sublattices can be linked to structural details for both R 5Ni2In4 and R 11Ni4In9 compounds.
RESUMO
The synthesis of the new equiatomic RScSb (R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type (I4/mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4/nmm) structure for the heavier R (R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds (R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 > T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [» » 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering (τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to explain the change-over from a ferromagnetic structure as found in the CeScSi-type compounds CeScSb and NdScSb to the antiferromagnetic state as found in TbScSb and GdScSb.
RESUMO
The synthesis of the new compounds R(15)Si(9)C with R = Sm, Gd-Er, Y and R(15)Ge(9)C with R = Ce, Pr and Nd has been recently reported; these compounds crystallize in the hexagonal La(15)Ge(9)Fe structure type, hP50-P6(3)mc, Z = 2 (ordered superstructure of La(5)Ge(3) (Mn(5)Si(3)-type, hP 16-P6(3)/mcm, Z = 2)). Here we report the results of a neutron diffraction investigation that we have performed to study the crystal and magnetic structures of the R(15)Si(9)C compounds with R = Tb, Ho and Er. All three compounds see the establishment of commensurate magnetic order with a predominantly ferromagnetic interaction. Details of mixed antiferro-ferromagnetic spin arrangements (κ = [000]) (for Tb(15)Si(9)C and Ho(15)Si(9)C) or of purely ferromagnetic ordering (Er(15)Si(9)C), and of their temperature dependence, are given and linked to the different coordination of the four dissimilar rare earth sites. In the Tb and Ho compounds the thermal evolution of the magnetic moment values strongly differs between the different R sites. The position occupied by the principal carbon has been determined (Wyckoff site 2b) and the existence of a second position available for the interstitial carbon (Wyckoff site 2a) has been revealed for R = Ho, Tb. Moreover, in the Tb and Ho compounds the magnetic moment value of the rare earth site R4, surrounding the second interstitial carbon site, is strongly reduced if compared to the value on the other rare earth sites. The magnetic transition temperatures of all three compounds, i.e. T(C) = 130, 43 and 45 K for Tb(15)Si(9)C, Ho(15)Si(9)C and Er(15)Si(9)C, are remarkably high compared to those of the parent R(5)Si(3) compounds. The magnetic behaviour of the partly filled Tb(5)Si(3)C(0.25) is reported.
RESUMO
We report specific heat measurements on neutron-irradiated MgB2 samples, for which the critical temperature is lowered to 8.7 K, but the superconducting transition remains extremely sharp, indicative of a defect structure extremely homogeneous. Our results evidence the presence of two superconducting gaps in the temperature range above 21 K, while single-gap superconductivity is well established as a bulk property, not associated with local disorder fluctuations, when Tc decreases to 11 K.
RESUMO
We have measured the transverse field muon spin precession in the flux-lattice (FL) state of the two-gap superconductor MgB2 and of the electron doped compounds Mg(1-x)AlxB2 in magnetic fields up to 2.8 T. We show the effect of the two gaps on the internal field distribution in the FL, from which we determine two coherence length parameters and the doping dependence of the London penetration depth. This is an independent determination of the complex vortex structure already suggested by the STM observation of large vortices in a MgB2 single crystal. Our data agree quantitatively with STM and we thus validate a new phenomenological model for the internal fields.