Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 307(3): H379-90, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906914

RESUMO

We have previously shown that RhoA-mediated actin polymerization stimulates smooth muscle cell (SMC)-specific transcription by regulating the nuclear localization of the myocardin-related transcription factors (MRTFs). On the basis of the recent demonstration that nuclear G-actin regulates MRTF nuclear export and observations from our laboratory and others that the RhoA effector, mDia2, shuttles between the nucleus and cytoplasm, we investigated whether nuclear RhoA signaling plays a role in regulating MRTF activity. We identified sequences that control mDia2 nuclear-cytoplasmic shuttling and used mDia2 variants to demonstrate that the ability of mDia2 to fully stimulate MRTF nuclear accumulation and SMC-specific gene transcription was dependent on its localization to the nucleus. To test whether RhoA signaling promotes nuclear actin polymerization, we established a fluorescence recovery after photobleaching (FRAP)-based assay to measure green fluorescent protein-actin diffusion in the nuclear compartment. Nuclear actin FRAP was delayed in cells expressing nuclear-targeted constitutively active mDia1 and mDia2 variants and in cells treated with the polymerization inducer, jasplakinolide. In contrast, FRAP was enhanced in cells expressing a nuclear-targeted variant of mDia that inhibits both mDia1 and mDia2. Treatment of 10T1/2 cells with sphingosine 1-phosphate induced RhoA activity in the nucleus and forced nuclear localization of RhoA or the Rho-specific guanine nucleotide exchange factor (GEF), leukemia-associated RhoGEF, enhanced the ability of these proteins to stimulate MRTF activity. Taken together, these data support the emerging idea that RhoA-dependent nuclear actin polymerization has important effects on transcription and nuclear structure.


Assuntos
Núcleo Celular/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aorta Torácica/enzimologia , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Forminas , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Proteína rhoA de Ligação ao GTP
2.
Arterioscler Thromb Vasc Biol ; 31(10): 2193-202, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21757658

RESUMO

OBJECTIVE: The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS: We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS: FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.


Assuntos
Quimiotaxia , Quinase 1 de Adesão Focal/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neovascularização Fisiológica , Animais , Aorta/embriologia , Aorta/enzimologia , Apoptose , Becaplermina , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiotaxia/genética , Vasos Coronários/embriologia , Vasos Coronários/enzimologia , Cortactina/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/embriologia , Neovascularização Fisiológica/genética , Neuropeptídeos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Pseudópodes/enzimologia , Artéria Pulmonar/embriologia , Artéria Pulmonar/enzimologia , Codorniz/embriologia , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
3.
Cancer Res ; 73(1): 50-61, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23135917

RESUMO

Tumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks. Here, we show in established murine and human models of breast cancer how differential regulation of Akt by the small GTPase RhoB in cancer cells or stromal endothelial cells determines their dormancy versus outgrowth when angiogenesis becomes critical. In cancer cells in vitro or in vivo, RhoB functions as a tumor suppressor that restricts EGF receptor (EGFR) cell surface occupancy as well as Akt signaling. However, after activation of the angiogenic switch, RhoB functions as a tumor promoter by sustaining endothelial Akt signaling, growth, and survival of stromal endothelial cells that mediate tumor neoangiogenesis. Altogether, the positive impact of RhoB on angiogenesis and progression supercedes its negative impact in cancer cells themselves. Our findings elucidate the dominant positive role of RhoB in cancer. More generally, they illustrate how differential gene function effects on signaling pathways in the tumor stromal component can complicate the challenge of developing therapeutics to target cancer pathophysiology.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA