Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37501572

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387400

RESUMO

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021080

RESUMO

The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Carga Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Peptidomiméticos/farmacologia , Staphylococcus aureus/patogenicidade , Estereoisomerismo
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673985

RESUMO

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Humanos , Anuros , Pele/microbiologia , Pele/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química
5.
Crit Rev Microbiol ; 49(1): 117-149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35313120

RESUMO

Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.


Assuntos
Bactérias , Produtos Biológicos , Animais , Humanos , Biofilmes , Antibacterianos/química , Produtos Biológicos/farmacologia
6.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971429

RESUMO

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pneumopatias/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bicarbonatos/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Pneumopatias/microbiologia , Pneumopatias/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Ratos , Ratos Endogâmicos F344
7.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683025

RESUMO

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) Candida species and Cryptococcus neoformans, with MIC50 between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC80 ranging from 4 to 32 µM, and (iii) Aspergillus strains with MIC80 of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of Candida albicans cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some C. albicans virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast-mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30-35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.


Assuntos
Antifúngicos , Candida albicans , Animais , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros , Biofilmes , Testes de Sensibilidade Microbiana , Fatores de Virulência/farmacologia
8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163819

RESUMO

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Queratinócitos/citologia , Luz/efeitos adversos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Síndrome de Down , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação , Fatores de Transcrição da Família Snail/metabolismo , Staphylococcus aureus/efeitos da radiação
9.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806198

RESUMO

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Assuntos
Herpesvirus Humano 1 , Anfíbios , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Herpesvirus Humano 1/fisiologia , Replicação Viral
10.
Biochemistry ; 60(39): 2943-2955, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547893

RESUMO

The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane. Notably, accumulating data suggest that AMPs can activate the two-component systems (TCSs) of Gram-negative bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible for remodeling of the bacterial cell surface. To better understand this mechanism, we utilized bacteria deficient either in one system alone or in both and biophysical tools including fluorescence spectroscopy, single-cell atomic force microscopy, electron microscopy, and mass spectrometry (Moskowitz, S. M.; Antimicrob. Agents Chemother. 2012, 56, 1019-1030; Cheng, H. Y.; J. Biomed. Sci. 2010, 17, 60). Our data suggested that the two systems have opposing effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs by making the surface less rigid, more polarized, and permeable with a slightly more negatively charged cell wall. In addition, the periplasmic space is thinner. In contrast, the knockout of PmrAB did not affect its susceptibility, while it made the bacterial outer layer very rigid, less polarized, and less permeable than the other two mutants, with a negatively charged cell wall similar to the WT. Overall, the data suggest that the coexistence of systems with opposing effects on the biophysical properties of the bacteria contribute to their membrane flexibility, which, on the one hand, is important to accommodate changing environments and, on the other hand, may inhibit the development of meaningful resistance to AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Infecções por Salmonella/tratamento farmacológico , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Periplasma/efeitos dos fármacos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Salmonella enterica/metabolismo , Sorogrupo
11.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429882

RESUMO

Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides' ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides' ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Linhagem Celular , Doença Crônica/prevenção & controle , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/patologia , Ciclo-Oxigenase 2/genética , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Defensinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-6/genética , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/química , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Estereoisomerismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
12.
J Org Chem ; 85(16): 10891-10901, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806095

RESUMO

Colistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural ent-beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant Pseudomonas aeruginosa strains including clinical isolates to exploit the versatility of the diterpene scaffold. Microbiological assays coupled with molecular modeling indicated that for a more efficient colistin adjuvant activity, likely resulting from inhibition of the ArnT activity by the selected compounds and therefore from their interaction with the catalytic site of ArnT, an ent-beyerane scaffold is required along with an oxalate-like group at C-18/C-19 or a sugar residue at C-19 to resemble L-Ara4N. The ent-beyerane skeleton is identified for the first time as a privileged scaffold for further cost-effective development of valuable colistin resistance inhibitors.


Assuntos
Colistina , Diterpenos , Antibacterianos/farmacologia , Proteínas de Bactérias , Diterpenos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
13.
J Enzyme Inhib Med Chem ; 35(1): 1751-1764, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32957844

RESUMO

The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteólise/efeitos dos fármacos , Ovinos , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321906

RESUMO

Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70-80% killing at 50-100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sinergismo Farmacológico , Tobramicina/farmacologia
15.
Molecules ; 25(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784887

RESUMO

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Infecções Estafilocócicas/microbiologia
16.
Biomacromolecules ; 20(5): 1876-1888, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013061

RESUMO

Due to their excellent in vitro activity against multidrug resistant bacteria, antimicrobial peptides (AMPs) hold promise for treatment of Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) sufferers. In this work, poly(lactide- co-glycolide) (PLGA) nanoparticles for lung delivery of AMPs deriving from the frog-skin esculentin-1a, namely, Esc(1-21) and Esc(1-21)-1c (Esc peptides), were successfully developed. Improved peptide transport through artificial CF mucus and simulated bacterial extracellular matrix was achieved in vitro. The formulations were effectively delivered through a liquid jet nebulizer already available to patients. Notably, Esc peptide-loaded nanoparticles displayed an improved efficacy in inhibiting P. aeruginosa growth in vitro and in vivo in the long term. A single intratracheal administration of Esc peptide-loaded nanoparticles in a mouse model of P. aeruginosa lung infection resulted in a 3-log reduction of pulmonary bacterial burden up to 36 h. Overall, results unravel the potential of PLGA nanoparticles as a reliable delivery system of AMPs to lungs.


Assuntos
Proteínas de Anfíbios/administração & dosagem , Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Nanopartículas/química , Pneumonia/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/efeitos adversos , Pseudomonas aeruginosa/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos
17.
Amino Acids ; 50(6): 723-734, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29549522

RESUMO

Long-standing Type 2 diabetes is associated with loss of both ß-cell function and ß-cell mass. Peptides derived from the frog-skin host-defense peptide esculentin-1 have been shown to exhibit potent, broad-spectrum antimicrobial activity. The aim of the present study is to determine whether such peptides also show insulinotropic and ß-cell protective activities. Esculentin-1a(1-21).NH2, esculentin-1b(1-18).NH2, and esculentin-1a(1-14).NH2 produced concentration-dependent stimulations of insulin release from BRIN-BD11 rat clonal ß-cells, 1.1B4 human-derived pancreatic ß-cells, and isolated mouse islets with no cytotoxicity at concentrations of up to 3 µM. The mechanism of insulinotropic action involved membrane depolarization and an increase in intracellular Ca2+ concentrations. The analogue [D-Lys14, D-Ser17]esculentin-1a(1-21).NH2 (Esc(1-21)-1c) was less potent in vitro than the all L-amino acid containing peptides and esculentin-1a(9-21) was inactive indicating that helicity is an important determinant of insulinotropic activity. However, intraperitoneal injection of Esc(1-21)-1c (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion, whereas administration of esculentin-1a(1-21).NH2, esculentin-1b(1-18).NH2, and esculentin-1a(1-14) was without significant effect on plasma glucose levels. Esc(1-21)-1c (1 µM) protected BRIN-BD11 cells against cytokine-induced apoptosis (P < 0.01) and augmented proliferation of the cells (P < 0.01) to a similar extent as glucagon-like peptide-1. The data demonstrate that the multifunctional peptide Esc(1-21)-1c, as well as showing therapeutic potential as an anti-infective and wound-healing agent, may constitute a template for development of compounds for treatment of patients with Type 2 diabetes.


Assuntos
Proteínas de Anfíbios/farmacologia , Apoptose/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Peptídeos/farmacologia , Proteínas de Anfíbios/química , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/química , Células Secretoras de Insulina/patologia , Camundongos , Peptídeos/química , Ranidae , Ratos
18.
J Pept Sci ; 24(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29349894

RESUMO

Temporin A (FLPLIGRVLSGIL-NH2 ), temporin F (FLPLIGKVLSGIL-NH2 ), and temporin G (FFPVIGRILNGIL-NH2 ), first identified in skin secretions of the frog Rana temporaria, produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal ß-cells at concentrations ≥1 nM, without cytotoxicity at concentrations up to 3 µM. Temporin A was the most effective. The mechanism of insulinotropic action did not involve an increase in intracellular Ca2+ concentrations. Temporins B, C, E, H, and K were either inactive or only weakly active. Temporins A, F, and G also produced a concentration-dependent stimulation of insulin release from 1.1B4 human-derived pancreatic ß-cells, with temporin G being the most potent and effective, and from isolated mouse islets. The data indicate that cationicity, hydrophobicity, and the angle subtended by the charged residues in the temporin molecule are important determinants for in vitro insulinotropic activity. Temporin A and F (1 µM), but not temporin G, protected BRIN-BD11 cells against cytokine-induced apoptosis (P < 0.001) and augmented (P < 0.001) proliferation of the cells to a similar extent as glucagon-like peptide-1. Intraperitoneal injection of temporin G (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion whereas temporin A and F administration was without significant effect on plasma glucose levels. The study suggests that combination therapy involving agents developed from the temporin A and G sequences may find application in Type 2 diabetes treatment.


Assuntos
Proteínas de Anfíbios/farmacologia , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Proteínas/farmacologia , Rana temporaria/metabolismo , Pele/química , Alanina/farmacologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Proliferação de Células , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Injeções Intraperitoneais , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/farmacologia , Ratos
19.
Biochim Biophys Acta ; 1858(4): 800-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724203

RESUMO

The frog skin-derived antimicrobial peptide esculentin-1a(1-21)NH2 [Esc(1-21)], and its diastereomer Esc(1-21)-1c (containing two D-amino acids at positions 14 and 17), have been recently found to neutralize the toxic effect of Pseudomonas aeruginosa lipopolysaccharide (LPS), although to different extents. Here, we studied the three-dimensional structure of both peptides in complex with P. aeruginosa LPS, by transferred nuclear Overhauser effect spectroscopy. Lack of NOE peaks revealed that both the peptides adopted a random coil structure in aqueous solution. However, Esc(1-21) adopted an amphipathic helical conformation in LPS micelles with 5 basic Lys residues forming a hydrophilic cluster. In comparison, the diastereomer maintained an alpha helical conformation only at the N-terminal region, whereas the C-terminal portion was quite flexible. Isothermal titration calorimetry (ITC) revealed that the interaction of Esc(1-21) with LPS is an exothermic process associated with a dissociation constant of -4µM. In contrast, Esc(1-21)-1c had almost 8 times weaker binding affinity to LPS micelles. Moreover, STD NMR data supported by docking analysis have identified those amino acid residues responsible for the peptide's binding to LPS micelles. Overall, the data provide important mechanistic insights on the interaction of esculentin-derived peptides with LPS and the reason for their different anti-endotoxin activity. These data might also assist to further design more potent antimicrobial peptides with antisepsis properties, which are highly needed to overcome the widespread concern of the available anti-infective agents.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos/química , Peptídeos/química , Pseudomonas aeruginosa/química , Anti-Infecciosos/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína
20.
Biochim Biophys Acta Biomembr ; 1859(12): 2327-2339, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28912103

RESUMO

Antimicrobial peptides (AMPs) represent new alternatives to cope with the increasing number of multi-drug resistant microbial infections. Recently, a derivative of the frog-skin AMP esculentin-1a, Esc(1-21), was found to rapidly kill both the planktonic and biofilm forms of the Gram-negative bacterium Pseudomonas aeruginosa with a membrane-perturbing activity as a plausible mode of action. Lately, its diastereomer Esc(1-21)-1c containing two d-amino acids i.e. DLeu14 and DSer17 revealed to be less cytotoxic, more stable to proteolytic degradation and more efficient in eradicating Pseudomonas biofilm. When tested in vitro against the free-living form of this pathogen, it displayed potent bactericidal activity, but this was weaker than that of the all-l peptide. To investigate the reason accounting for this difference, mechanistic studies were performed on Pseudomonas spheroplasts and anionic or zwitterionic membranes, mimicking the composition of microbial and mammalian membranes, respectively. Furthermore, structural studies by means of optical and nuclear magnetic resonance spectroscopies were carried out. Our results suggest that the different extent in the bactericidal activity between the two isomers is principally due to differences in their interaction with the bacterial cell wall components. Indeed, the lower ability in binding and perturbing anionic phospholipid bilayers for Esc(1-21)-1c contributes only in a small part to this difference, while the final effect of membrane thinning once the peptide is inserted into the membrane is identical to that provoked by Esc(1-21). In addition, the presence of two d-amino acids is sufficient to reduce the α-helical content of the peptide, in parallel with its lower cytotoxicity.


Assuntos
Proteínas de Anfíbios/química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Citotoxinas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Anfíbios/isolamento & purificação , Proteínas de Anfíbios/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colesterol/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Cinética , Leucina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Conformação Proteica em alfa-Hélice , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ranidae , Serina/química , Pele/química , Esferoplastos/química , Esferoplastos/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA